近年来,Python 在数据科学行业扮演着越来越重要的角色。因此,我根据近来的使用体验,在本文中列出了对数据科学家、工程师们最有用的那些库。 由于这些库都开源了,我们从Github上引入了提交数,贡献
AI 研习社按:本文作者为 ActiveWizards 的数据顾问 Igor Bobriakov,林立宏与 Raey Li 编译。 Igor Bobriakov 近年来,Python 在数据科学行业扮
我一直在寻找一种直观的方法来绘制流程中状态之间的流程或连接。R软件恰好满足了我的需求。
近几年来,Python在数据科学界受到大量关注,我们在这里为数据科学界的科学家和工程师列举出了最顶尖的Python库。(文末更多往期译文推荐) 因为这里提到的所有的库都是开源的,所以我们还备注了每个库的贡献资料数量、贡献者人数以及其他指数,可对每个Python库的受欢迎程度加以辅助说明。 1. NumPy (资料数量:15980; 贡献者:522) 在最开始接触Python的时候,我们不可避免的都需要寻求Python的SciPy Stack的帮助,SciPy Stack是一款专为Python中科学计算而设
有个人可能会问 NumPy-Pandas-SciPy 不都是免费资源吗,为什么还要花钱来上课?没错,我也是参考了大量书籍、优质博客和付费课程中汲取众多精华,才打磨出来的前七节课。
作者 | Sanket Gupta 译者 | 王强 策划 | 刘燕 本文最初发布于 Medium 网站,经原作者授权由 InfoQ 中文站翻译并分享。 当你的数据集变得越来越大,迁移到 Spark 可以提高速度并节约时间。 多数数据科学工作流程都是从 Pandas 开始的。 Pandas 是一个很棒的库,你可以用它做各种变换,可以处理各种类型的数据,例如 CSV 或 JSON 等。我喜欢 Pandas — 我还为它做了一个名为“为什么 Pandas 是新时代的 Excel”的播客。 我仍然认为 Pandas
预测通常被认为是报告的发展。报告可以帮助我们回答,发生了什么事?预测有助于回答下一个逻辑问题,将会发生什么?
通过DNS将域名解析成IP地址。在解析过程中,按照浏览器缓存、系统缓存、路由器缓存、ISP(运营商)DNS缓存、根域名服务器、顶级域名服务器、主域名服务器的顺序,逐步读取缓存,直到拿到IP地址
每个数据科学家都必须掌握的最重要的技能之一是正确研究数据的能力。彻底的探索性数据分析 (EDA, Exploratory Data Analysis) 是必要的,这是为了确保收集数据和执行分析的完整性。
数据探索和预处理是任何数据科学或机器学习工作流中的重要步骤。在使用教程或训练数据集时,可能会出现这样的情况:这些数据集的设计方式使其易于使用,并使所涉及的算法能够成功运行。然而,在现实世界中,数据是混乱的!它可能有错误的值、不正确的标签,并且可能会丢失部分内容。
Python对数据科学如此重要的原因之一是它海量的数据分析和可视化库。在本文中,我们讨论了最受欢迎的一些。
一篇文章围绕一张图,讲述一个主题。不过这个主题偏大,我估计需要好几篇文章才能说得清楚。
数据链路控制子层:保证“传好”,确保链路上的数据能够正确传输。确定一次传输数据的长度,依据此长度进行分段,定义校验位等。
计算与推断思维 一、数据科学 二、因果和实验 三、Python 编程 四、数据类型 五、表格 六、可视化 七、函数和表格 八、随机性 九、经验分布 十、假设检验 十一、估计 十二、为什么均值重要 十三、预测 十四、回归的推断 十五、分类 十六、比较两个样本 十七、更新预测 利用 Python 进行数据分析 · 第 2 版 第 1 章 准备工作 第 2 章 Python 语法基础,IPython 和 Jupyter 笔记本 第 3 章 Python 的数据结构、函数和文件 第 4 章 NumPy 基础:数
在本文中,我们将探讨如何在 Python 中使用 Plotly 创建人口金字塔。Plotly是一个强大的可视化库,允许我们在Python中创建交互式和动态绘图。
使用可视化工具包探索Lyft预测数据集介,可视化动图非常消耗流量,请在wifi环境下查看本篇文章
本文为joshua317原创文章,转载请注明:转载自joshua317博客 https://www.joshua317.com/article/54
数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。
在当今数据驱动的世界里,数据的可视化变得越来越重要。特别是在网络分析领域,将复杂的关系网络转换为直观的图形表示,对于理解和传达信息至关重要。在众多的数据可视化工具中,Python的Pyvis库以其简单性和强大的功能脱颖而出。
在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。
本文是 Python 系列的 Cufflinks 补充篇。整套 Python 盘一盘系列目录如下:
作为任何数据科学项目的一部分,数据可视化在理解更多可用数据和识别任何主要模式方面发挥着重要作用。
通过经典的airquality数据集(其中包含有关1973年5月至9月纽约每日空气质量测量的信息)展示vis_dat()的功能。
您将学习如何使用Prophet(在R中)解决一个常见问题:预测公司明年的每日订单。
根据 Businessbroadway 的一项分析,数据专业人员将会花高达 60% 的时间用于收集、清理和可视化数据。
数据可视化是数据科学的重要组成部分。它对于探索和理解数据非常有用。在某些情况下,可视化在传递信息方面也比普通数字好得多。
在使用 pandas 进行数据分析时,进行一定的数据探索性分析(EDA)是必不可少的一个步骤,例如常见统计指标计算、缺失值、重复值统计等。
ZigBee堆栈是在IEEE 802.15.4标准基础上建立的,定义了协议的MAC和PHY层。ZigBee设备应该包括IEEE802.15.4(该标准定义了RF射频以及与相邻设备之间的通信)的PHY和MAC层,以及ZigBee堆栈层:网络层(NWK)、应用层和安全服务提供层。图1-1给出了这些组件的概况。
作者|Melissa Bierly 选文|Aileen 翻译|冯琛 校对|Elaine琏 数据可视化专家Andy Kirk说过,数据可视化分为两类:探索性可视化图表和解释性可视化图表。解释性可视化图表的目标是进行描述——它们是根据对事物表面的关键线索而被仔细构造出来的。 另一方面,探索性可视化图表建立了与数据库或主题事件的互动,它们帮助用户探索数据,让他们发掘自己的观点:发现他们自己认为相关的或者感兴趣的事物。 通常,探索性可视化图表是交互式的。尽管现在有许多Python绘图库,但只有少数可以创建能够使你
选自TowardsDataScience 作者:Vihar Kurama 机器之心编译 参与:刘晓坤、许迪 R 语言是结合了 S 编程语言的计算环境,可用于实现对数据的编程;它有很强大的数值分析工具,对于处理线性代数、微分方程和随机学的问题非常有用。通过一系列内建函数和库,你可以用 R 语言学习数据可视化,特别是它还有很多图形前端。本文将简单介绍 R 语言的编程基础,带你逐步实现第一个可视化案例。 代码地址:https://github.com/aaqil/r-lang-fundamentals R 语言最
经常有朋友问:“以太网交换机是什么?它的作用与功能呢?和如何选择适合的交换机呢?本期武汉海翎光电的小编将详细为大家介绍关于交换机的基础知识。
VLAN(Virtual Local Area Network)即虚拟局域网,是将一个物理的LAN在逻辑上划分成多个广播域的通信技术。VLAN内的主机间可以直接通信,而VLAN间不能直接通信,从而将广播报文限制在一个VLAN内。
Pandas 是 Python 中最广泛使用的数据分析和操作库。它提供了许多功能和方法,可以加快 「数据分析」 和 「预处理」 步骤。
为了保证网络的可靠性,我们往往会对关键链路进行冗余设计,而这难免就会产生一个封闭的物理环路,但是以太网的转发机制又决定了不能有物理环路,一有环路,发给所有主机的广播就会在环路反复传播,这便是广播风暴,此时网络及应用的访问将会变得缓慢,发生网络丢包等,甚至导致网络完全中断。
PyGWalker可以简化Jupyter笔记本的数据分析和数据可视化工作流程,方法是将panda数据帧转换为Tableau风格的用户界面进行可视化探索。
Plotly 的 update_layout() 方法以及legend_font_color和legend_font_size参数可用于手动添加图例颜色和字体大小。下面提供了语法的插图 -
用到的仍是上一次的示例数据,为Daniel van der Meulen在1585年收到的信件所组成,
用到的仍是上一次的示例数据,为Daniel van der Meulen在1585年收到的信件所组成, 包括writer,source, destination和date
本次利又德的小编分享的内容有点多哦,主要有两部分:传统以太网和时间敏感网络TSN的区别,时间敏网络TSN一帧抢占技术。由于本文即将阐述“时间敏感网络”,因此,为了加以区别,我们将目前大家所熟知的以太网称为“传统以太网”。那么究竟“传统以太网”是如何工作的呢?利又德的小编就来和大家聊聊这个话题。
ISO11898主要定义了物理层和数据链路层,对比标准OSI通信模型,物理层和数据链路层属于最底层的两个层级。在详细讲ISO11898-1之前先来了解一下汽车CAN通信网络中常用的几个协议都处于OSI模型的什么位置。
面向单细胞的技术革命,让我们得以进入新的研究层面,但也对传统的分析方法提出了一系列的挑战。单细胞技术正在弥补分子生物学和组织生物学之间的鸿沟,进入高通量时代以来,这项技术所揭示的不是单一元素的信息,而是在单细胞层面揭示某种系统关系:DNA,RNA,ATAC等。我们知道,在系统中,关键要素除了来自元素本身(基因,转录本等生物小分子)之外,还来自元素之间的关系。虽然作为领域起源的社会网络分析可以追溯到20世纪30年代,图论可以上溯几个世纪,但网络科学的迅速崛起与普及只是近几十年的事情。目前,基因调控网络,生物代谢与信号转导网络,蛋白质互作网络作为基本的生物分子网络(Biological molecular network )已经在生物信息分析中得到广泛的应用。
加权基因表达网络分析(Weighted gene co-expression network analysis, WGCNA),又叫权重基因共表达网络分析,其根本思想是根据基因表达模式的不同,挖掘出相似表达模式的基因,定义为模块(module)的一种算法。具有相似表达模式的基因很可能是紧密共调控的,功能紧密相关的或同一条信号通路或过程的成员,有其特定的生理意义。芯片原始数据由R语言预处理后,得到基因表达数据,然后由maSigPro包处理得到整个肝再生过程和肝癌发生发展过程中的差异表达用来构建加权基因共表达网络。然后根据基因表达的相似性(共表达的基因)把网络分成几个模块,把每个模块和外部特征(比如时间点,病理进程等)进行关联,同时和maSigPro结果进行对比,鉴定模块中的关键基因(driver gene或hub gene),进行可视化。
数据可视化是任何数据科学或机器学习项目的重要组成部分。我们通常会从探索性数据分析(EDA)开始,以获得对数据的一些见解,然后创建可视化,这确实有助于使事情更清晰,更容易理解,尤其是对于更大,更高维度的数据集。在项目即将结束时,能够以清晰,简洁和令人信服的方式呈现你的最终结果非常重要,只有这样,你的受众(通常是非技术客户)才能够理解。
此图由作者使用本文分享的项目生成。几个月前,基于知识的问答(KBQA)还只是新奇事物。如今,对于任何人工智能爱好者来说,使用检索增强生成(RAG)实现KBQA已经轻而易举。看到自然语言处理领域的可能性如此迅速地扩展,令人着迷,而且每天都在变得更好。在我的最后一篇文章中,我分享了一种递归的RAG方法,用于根据大量文本语料库回答复杂查询的多跳推理式问答实现。
领取专属 10元无门槛券
手把手带您无忧上云