首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

20分钟了解TensorFlow基础

同时,我们会展示如何在你的系统上安装TensorFlow。...占位符 占位符是由 TensorFlow 指定的用于输入值的结构。 也可以认为它们是空变量,稍后将填充数据。它们首先用于构造我们的图形,并且只有在执行时才会使用输入数据。...如果 shape 参数被输入或作为 None 传递,那么可以用任何大小的数据替换占位符: ph = tf.placeholder(tf.float32,shape=(None,10)) 每当定义一个占位符...然后创建一个名为 x 的占位符,即内存中稍后存储值的位置。...之前已经介绍了TensorFlow的基础知识,之后将开始进入 TensorFlow 的深化阶段。 在随后的教程中,将了解如何利用 TensorFlow 库来解决优化问题并制定预测分析方程式。

89130

TensorFlow从入门到精通 | 01 简单线性模型(上篇)

导言 [TensorFlow从入门到精通] 01 简单线性模型(上)介绍了TensorFlow如何加载MNIST、定义数据维度、TensorFlow图、占位符变量和One-Hot Encoding...) 占位符变量(Placeholder variables) 占位符变量(Placeholder variables)作为图的输入,我们可以在每次执行图的时候进行更改。...我们称之为 喂(feeding)占位符变量,并在下面进一步说明。 首先,我们定义输入图像的占位符变量‘x’。这允许我们改变输入到TensorFlow图的图像。...1x = tf.placeholder(tf.float32, [None, img_size_flat]) 接下来,我们定义占位符变量‘y_true’,其是存放与占位符‘x’中输入图像相关联的真实标签...该占位符的数据类型设置成‘int64’,形状设置为‘[None]’,这意味着该占位符变量是任意长度的一维向量。

84020
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    21个项目玩转深度学习 学习笔记(1)

    在Tensorflow中,无论是占位符还是变量,它们实际上都是Tensor,从Tensorflow的名字中,就可以看出Tensor在整个系统中处于核心地位。...占位符不依赖于其他的Tensor,它的值由用户自行传递给Tensorflow,通常用来存储样本数据和标签。如定义的x,是用来存储训练图片数据的占位符。...它的形状为[None,784],None表示这一维的大小可以是任意的,也就是说,可以传递任意张训练图片给这个占位符,每张图片用一个784维的向量表示,同样的,y_也是一个占位符,它存储训练图片的实际标签...什么是变量,变量是指在计算过程中可以改变的值,每次计算后变量的值会被保存下来,通常用来存储模型的参数,如上面创建了两个变量,W、b。创建变量时通常需要指定某些初始值。...在会话中,不需要系统计算占位符的值,而是直接把占位符的值传递给会话,与变量不同的是,占位符的值不会保存,每次可以给占位符传递不同的值。

    1.3K20

    TensorFlow基础入门

    总结一下,记得初始化变量,创建一个会话并在会话中运行这些操作。 接下来,您还必须了解占位符。占位符是一个对象,其值只能在稍后指定。...占位符只是一个变量,您将仅在以后运行会话时分配数据。也就是说您在运行会话时向这些占位符提供数据。 以下是所发生的事情:当您指定计算所需的操作时,也就是告诉TensorFlow如何构建计算图。...Tensorflow提供了各种常用的神经网络函数,如tf.sigmoid和tf.softmax。对于这个练习,我们计算一个输入的sigmoid函数。 您将使用占位符变量x执行此练习。...在本练习中,您需要(1) 创建一个占位符x,(2) 使用tf.sigmoid定义计算sigmoid值,然后(3) 运行会话。...2.1 - 创建占位符 您的第一项任务是为X和Y创建占位符,可以稍后在运行会话时传递训练数据。 练习:执行下面的函数以创建tensorflow中的占位符。

    1.6K20

    01 TensorFlow入门(1)

    我们将介绍基本步骤,以了解TensorFlow如何运行,并最终在本书后面建立生产代码技术。 这些基础知识对于了解本书其余部分的内容很重要。...:在我们拥有数据并初始化了变量和占位符后,我们必须对模型进行定义。....:  在TensorFlow中,我们必须在我们之前设置数据,变量,占位符和模型告诉程序训练和更改变量以改进预测。 TensorFlow通过计算图完成了这一点。...我们可以将这些张量声明为变量,并将它们作为占位符进行馈送。 首先我们必须知道如何创建张量。...变量是算法的参数,TensorFlow跟踪如何改变这些来优化算法。 占位符是           允许您提供特定类型和形状的数据的对象,并且取决于计算图的结果,例如计算的预期结果。

    1.6K100

    解决AttributeError: module tensorflow has no attribute placeholder

    为了解决这个问题,有几种方法可以尝试:方法一:升级TensorFlow版本最简单的方法是将TensorFlow升级到与你的代码兼容的版本。...Placeholder在TensorFlow中,placeholder是一种特殊的操作,用于表示一种占位符,可以在稍后执行时提供具体的数值。...placeholder的应用场景使用placeholder的主要应用场景是在训练和测试过程中,数据不是固定的,需要在每次迭代或每个批次中提供不同的数值。...另外,placeholder还可以用于将数据输入到TensorFlow模型中,通过占位符我们可以定义输入和输出的数据形状,并在计算图中使用这些占位符来处理数据。...placeholder是一种特殊的操作,用于表示占位符,可以在稍后执行时提供具体的数值。

    2.6K20

    自创数据集,用TensorFlow预测股票教程 !(附代码)

    来源:机器之心 本文长度为4498字,建议阅读8分钟 本文非常适合初学者了解如何使用TensorFlow构建基本的神经网络。...本文非常适合初学者了解如何使用 TensorFlow 构建基本的神经网络,它全面展示了构建一个 TensorFlow 模型所涉及的概念与模块。...这正是 TensorFlow 的基本原理,用户可以通过占位符和变量定义模型的抽象表示,然后再用实际的数据填充占位符以产生实际的运算,下面的代码实现了上图简单的计算图: # Import TensorFlow...随后定义运算后就能执行运算图得出结果。 占位符 正如前面所提到的,神经网络的初始源自占位符。...我们后面会定义控制每次训练时使用的批量大小 batch_size。 变量 除了占位符,变量是 TensorFlow 表征数据和运算的另一个重要元素。

    3K71

    TensorFlow入门:一篇机器学习教程

    在这个TensorFlow教程中,您将学习如何在TensorFlow中使用简单而强大的机器学习方法,以及如何使用它的一些辅助库来调试,可视化和调整使用它创建的模型。...下面是一个简短的代码片段,显示了如何在TensorFlow中使用上面定义的术语来计算一个简单的线性函数。...占位符是TensorFlow允许开发人员通过绑定在某些表达式中的占位符将数据注入到计算图中的方式。...TensorBoard允许开发人员深入了解每个节点以及如何通过TensorFlow运行时执行计算。 ?...该函数load_data(filepath)将采用一个CSV文件作为参数,并返回一个元组,其中包含CSV中定义的数据和标签。 就在这个函数下面,我们定义了测试和训练数据的占位符。

    4.1K10

    使用TensorFlow动手实现的简单的股价预测模型

    这些数字存储在两个变量,a和b中。这些数字存储在两个变量a和b中,这两个值通过图形流动,到达了标有加号的正方形节点然后相加。相加的结果被存储到变量c中。其实a,b和c可以被视为占位符。...任何被输入到a和b的值都会相加并储存到c中。这就是TensorFlow的工作原理。用户通过占位符和变量来定义模型(神经网络)的抽象表示。然后占位符用实际数据“填充”,并发生实际计算。...库,然后用tf.placeholder()定义了两个占位符。...占位符的形状为[None, n_stocks]和[None],表示输入是一个二维矩阵,输出是一维向量。要正确地设计出神经网络所需的输入和输出维度,了解这些是至关重要的。...我们稍后将定义batch_size控制每次训练的批处理观察次数。 向量 除了占位符,向量是TensorFlow的另一个基础。

    1.3K60

    自创数据集,使用TensorFlow预测股票入门

    本文非常适合初学者了解如何使用 TensorFlow 构建基本的神经网络,它全面展示了构建一个 TensorFlow 模型所涉及的概念与模块。...这正是 TensorFlow 的基本原理,用户可以通过占位符和变量定义模型的抽象表示,然后再用实际的数据填充占位符以产生实际的运算,下面的代码实现了上图简单的计算图: # Import TensorFlow...随后定义运算后就能执行运算图得出结果。 占位符 正如前面所提到的,神经网络的初始源自占位符。...我们后面会定义控制每次训练时使用的批量大小 batch_size。 变量 除了占位符,变量是 TensorFlow 表征数据和运算的另一个重要元素。...拟合神经网络 完成对网络的占位符、变量、初始化器、代价函数和优化器的定义之后,就可以开始训练模型了,通常会使用小批量训练方法。

    1.4K70

    自创数据集,使用TensorFlow预测股票入门

    本文非常适合初学者了解如何使用 TensorFlow 构建基本的神经网络,它全面展示了构建一个 TensorFlow 模型所涉及的概念与模块。...这正是 TensorFlow 的基本原理,用户可以通过占位符和变量定义模型的抽象表示,然后再用实际的数据填充占位符以产生实际的运算,下面的代码实现了上图简单的计算图: # Import TensorFlow...随后定义运算后就能执行运算图得出结果。 占位符 正如前面所提到的,神经网络的初始源自占位符。...我们后面会定义控制每次训练时使用的批量大小 batch_size。 变量 除了占位符,变量是 TensorFlow 表征数据和运算的另一个重要元素。...拟合神经网络 完成对网络的占位符、变量、初始化器、代价函数和优化器的定义之后,就可以开始训练模型了,通常会使用小批量训练方法。

    1.2K70

    从零开始学TensorFlow【什么是TensorFlow?】

    这次,我们先来讲讲前三种(比较好理解),分别是变量、常量和占位符。...tf.global_variables_initializer() 2.3占位符 我最早接触占位符这个概念的时候是在JDBC的时候。...同样地,在TensorFlow占位符也是这么一个概念,可能需要等到运行的时候才把某些变量确定下来,于是我们就有了占位符。...在TensorFlow中,节点的类型可以分为三种: 存储节点:有状态的变量操作,通常用于存储模型参数 计算节点:无状态的计算和控制操作,主要负责算法的逻辑或流程的控制 数据节点:数据的占位符操作,用于描述图外输入的数据...看到这里的同学,可能就反应过来了:原来在上面创建的变量、常量和占位符在TensorFlow中都会生成一个节点!

    98020

    Tensorflow从入门到精通(二):附代码实战

    2 常量、变量及占位符 Tensorflow中对常量的初始化,不管是对数值、向量还是对矩阵的初始化,都是通过调用constant()函数实现的。...因为constant()函数在Tensorflow中的使用非常频繁,经常被用于构建图模型中常量的定义,所以接下来,我们通过程序1-3了解一下constant()的相关属性:程序2-1: import tensorflow...首先,我们通过程序2-4了解一下变量是如何被创建的: 程序2-4: import tensorflow as tf A = tf.Variable(3, name="number") B = tf.Variable...填充具体的内容,而无需每次都提前定义好变量的值,大大提高了代码的利用率。...小结:本节旨在让大家学会Tensorflow的基础知识,为后边实战的章节打下基础。主要介绍了Tensor的概念,以及Tensorflow中的常量、变量、占位符、feed等知识点。

    1.1K70

    独家 | 10分钟带你上手TensorFlow实践(附代码)

    :和中华 校对:程思衍 本文长度为2000字,建议阅读10分钟 通过这篇文章,你可以了解TensorFlow中最基础的几个概念,还可以学习最简单的线性回归如何在TensorFlow中完成。...占位符 占位符,顾名思义表示占位,是指等待被初始化/填充的tensors。占位符被用于训练数据,只有当代码是在会话中运行的时候占位符才会被填充。“喂给”占位符的东西叫做feed_dict。...占位符 定义两个占位符,用于随后填充训练数据 建模 线性回归的模型是 y_model = w * x, 我们需要计算出w的值。...TensorFlow中自带了许多优化器(Optimizer),用来在每次迭代后更新梯度,从而使cost函数最小。...为了真正运行定义好的图,还需要创建并运行一个会话,在此之前,可以先定义初始化所有变量的操作init: 第一步,在session.run()中调用init完成初始化操作。

    1.4K70

    TensorFlow极简入门教程

    TensorFlow 张量 import tensorflow as tf TensorFlow 中最基本的单位是常量(Constant)、变量(Variable)和占位符(Placeholder)。...常量定义后值和维度不可变,变量定义后值可变而维度不可变。在神经网络中,变量一般可作为储存权重和其他信息的矩阵,而常量可作为储存超参数或其他结构信息的变量。 1....占位符 我们已经创建了各种形式的常量和变量,但 TensorFlow 同样还支持占位符。占位符并没有初始值,它只会分配必要的内存。在会话中,占位符可以使用 feed_dict 馈送数据。...feed_dict 是一个字典,在字典中需要给出每一个用到的占位符的取值。...因为每增加一个常量,TensorFlow 都会在计算图中增加一个节点。所以说拥有几百万次迭代的神经网络会拥有极其庞大的计算图,而占位符却可以解决这一点,它只会拥有占位符这一个节点。

    1.6K41

    TensorFlow是什么?怎么用?终于有人讲明白了

    导读:在开始使用TensorFlow之前,必须了解它背后的理念。该库很大程度上基于计算图的概念,除非了解它们是如何工作的,否则无法理解如何使用该库。...01 计算图 要了解TensorFlow的工作原理,必须了解计算图是什么。计算图是一幅图,其中每个节点对应于一个操作或一个变量。变量可以将其值输入操作,操作可以将其结果输入其他操作。...这可以通过使用一个包含所有占位符的名称作为键的Python字典来实现,并为这些键赋值。在此示例中,我们将值1赋给x1,将值2赋给x2。...注意,TensorFlow相当聪明,可以处理更复杂的输入。让我们重新定义占位符,以便使用包含两个元素的数组。(在这里,我们给出完整的代码,以便更容易跟进该示例。)...▲图1-21 计算x1w1+x2w2的计算图 在这个例子中,我将x1、x2、w1和w2定义为包含纯量的占位符(它们将是输入)(记住:在定义占位符时,必须始终将维度作为第二个输入参数传入,在本例中是1)。

    1K10

    深度学习入门实战(二):用TensorFlow训练线性回归

    如果不想搜索,也可以看本系列后续文章,以后也会介绍如何在Mac下安装GPU版。...0x02 TensorFlow基本使用 在介绍样例之前,我们先介绍一下TensorFlow的一些基本概念 1.placehoder(占位符) tf.placeholder(dtype, shape=None...dytpe:占位符的数据类型 shape:占位符的纬度,例如[2,2]代表2x2的二维矩阵,None可以代表任意维度,例如[None,2]则代表任意行数,2列的二维矩阵 name:占位符的名字 变量在定义时要初始化...,但可能有些变量我们一开始定义的时候并不一定知道该变量的值,只有当真正开始运行程序的时候才由外部输入,比如我们需要训练的数据,所以就用占位符来占个位置,告诉TensorFlow,等到真正运行的时候再通过输入数据赋值...global_variables_initializer真正在TensorFlow的Session中初始化所有变量,后面的样例中也会有体现。

    7.9K11
    领券