一、数据源 1、相似人群数据存在TDW库中,数据字典说明: CREATE TABLE sim_people_tdw_tbl( uid STRING COMMENT 'reader id',...,格式为用户编号:相同阅读量,相似用户之间以逗号分隔 sim_num BIGINT 相似人群的人数 update_date string 数据日期 2、基础用户画像存在MongoDB中 Image [...、二级分类、关键字、topic、阅读来源 negative 负画像(不喜欢),其他字段的含义与正画像一样 update_time 更新时间 cityCode或city 城市编码 3、相似人群画像也存在...:param all_uid:用户的编号列表 :type batch_num: int """ rs = {} # 数据库查询所有人群用户画像...om_users_basic_profile_map # print("dump basic profile %d records" % len(pac_all_users_profile_map)) # 数据库查询相似人群画像
规则圈选是按照指定条件从画像数据中找到满足要求的用户并沉淀为人群的一种常见的人群创建方式。所谓的规则就是条件的组合,比如北京市男性用户,最近一周平均在线时长介于2到10分钟之间的中老年用户。...规则圈选的实现依赖画像宽表数据或者BitMap数据,其实现逻辑如图5-12所示。...筛选北京市男性用户的需求可以通过画像平台可视化页面表达出来,其圈选配置最终通过接口传递到平台服务端并存储在数据库MySQL中。...OSS中的人群数据主要应用在通过接口获取人群数据的场景下。人群数据压缩为BitMap并存储到OSS中,一亿人群大小在100M左右,通过接口可以在几秒内获取到人群结果。...每一个人群最终都会存储在Hive表和OSS中,但是不同人群创建方式优先产出的人群存储类型不同,所以画像平台需要支持Hive和OSS之间数据的相互转换。
导入人群是将外部数据导入画像平台构建人群,主要有3种实现方式:文件导入、Hive表导入和SQL导入。...文件导入是将TXT、CSV等格式的文件导入画像平台;Hive表导入是指定源Hive表及导入字段,将满足条件的源表数据导入画像平台;SQL导入是Hive表导入的延伸,用户可以自由编写SQL语句,其运行结果最终导入画像平台...不同用户配置导入人群时涉及的数据表不同,要严格校验用户对数据表是否有读权限,防止发生数据安全事故。...导入人群是画像平台最常用的人群创建方式之一,其实现了将各类数据源沉淀为人群的功能,支持更灵活的人群创建方式,拓展了画像平台数据范围。...比如运营人员将某次活动中表现良好的用户导入画像平台并构建成人群,后续可以进行广告投放或者人群分析;数据分析师离线统计出了一批高价值用户,导入平台构建人群后可以直接提供给业务使用。
上文提到了使用画像宽表可以便捷的创建人群,本文介绍人群创建所依赖的另外一种数据组织形式:标签BitMap。...使用画像宽表圈人的逻辑是从明细数据中找到满足条件的用户并最终构建人群,而使用BitMap进行圈人会对用户进行预聚合,在人群圈选时直接使用聚合后的结果进行计算。...BitMap以上特点都非常适合存储人群数据,也决定了其在画像平台的广泛使用。基于Hive标签数据表可以生成BitMap,图5-10展示了性别和常住省标签生成BitMap的示意图。...;最后在人群创建过程中从数据表中查询出BitMap并计算出人群数据。...业界一般使用混合模式,优先通过BitMap进行人群创建,不适用的场景下兜底使用画像宽表进行人群圈选。采用混合模式要考虑对齐画像宽表和BitMap的标签时间,这增加了工程的实现复杂度。
本节主要介绍人群创建所依赖的画像宽表的生成方式。为什么要创建画像宽表?基于原始的标签数据表进行人群圈选有什么问题?如何生成画像宽表?针对这些问题本节会给出详细解答。...画像宽表 本小节将首先介绍画像宽表的表结构以及在人群创建中的主要优势,然后通过一个示例介绍画像宽表的生成方式及优化手段,最后介绍画像宽表数据写入ClickHouse的实现方案。...通过分散表创建人群将造成标签数据表的权限申请、审批、变更流程异常繁琐 画像平台作为一个“用户”申请所有标签数据表权限来构建一张宽表,普通用户创建人群的过程只与宽表交互,避免了用户直接申请所有上游数据表权限的问题...本书技术方案支持多日期画像数据下的人群圈选等功能,自然兼容单日期下的各类功能。 画像宽表生成 画像宽表的表结构已经明确,那如何生成宽表数据?...画像宽表存储 画像宽表数据存储在Hive表中,可以通过Hive SQL执行人群圈选操作,由于其依赖Hadoop生态下的数据引擎执行,其执行时间通常在几分钟到几十分钟不等。
Push侧通过人群接口每日定时拉取人群数据,然后遍历人群中的每一个用户并推送Push消息。...应用方式:调研人员通过画像平台LBS人群圈选功能找到了几所高校附近出现过的用户,并结合用户年龄段等标签提高了用户圈选的精确度。生成人群之后,私信平台可以通过接口拉取人群数据并进行私信推送。...应用方式:在画像平台上通过规则圈选创建女性用户人群A,通过文件导入的方式创建黑产用户人群B,通过组合人群的方式创建人群A与B的差集人群C。...应用方式:外呼团队在画像平台上创建外呼人群,并借助人群拆分功能将该人群按照25%、25%、25%、25%的比例拆分为4个子人群,在外呼平台导入4个子人群并配置不同的话术进行外呼操作。...应用方式:产品经理在画像平台上创建种子人群并申请该人群支持判存服务,客户端调用判存服务判断当前用户是否在种子人群中,如果存在则展示小游戏功能入口。
规则圈选中所使用的画像标签数据是离线计算出来的,大部分在计算过程中剔除了很多明细信息,仅保留了最关键的画像内容,即某日某用户的标签值。...虽然画像数据是浓缩精简后的核心数据,但在很多人群圈选场景中依赖行为明细数据,比如运营人员希望找出2022-08-15 10:00:00到2022-08-15 12:00:00之间通过手机客户端点赞了某篇文章的用户...行为明细数据主要包含五大要素:WHO: 行为涉及的用户,比如UserId或者DeviceId。WHEN: 行为发生的时间,一般存储的是毫秒时间戳。WHERE: 行为发生的具体页面、功能模块。...在行为明细圈选时可以结合画像标签数据一起使用,比如找到在某时间段通过手机客户端点赞了某篇文章的北京市男性用户,可以直接关联画像宽表进行计算。...----本文节选自《用户画像:平台构建与业务实践》,转载请注明出处。
,比如在人群男女分布的基础上,针对其中男性用户再次下钻分析其常住省分布;人群交叉分析是使用多个维度交叉计算其人群数据指标,比如通过性别和常住省交叉分析其在线时长;人群对比分析是对已经完成画像分析的多个人群进行分析结果对比...人群分布分析人群分布分析是计算人群在画像标签上的分布占比数据,比如分析人群的性别分布,常住省分布,兴趣爱好分布等。...对于自动更新人群,如果也需要定时计算其画像分布数据,那么使用该人群连续多日的分布分析结果可以构建出标签值占比变化趋势图。...通过折线图中数值波动可以感知到人群指标变化;基于折线图数据可以实现数据报警功能,当数据波动超过阈值时可以发出报警信息。...图片人群交叉分析人群交叉分析可以选择多个画像标签维度,通过交叉计算不同标签值组合下的人群指标数据。
经常线上云吸猫的朋友们可能会产生真的在吸猫的错觉,但其实,“为猫消费”的人群才算真正吸上了猫。...▲猫吃jiojio都这么可爱 《2018年中国宠物行业白皮书》显示,真正吸猫的人群中,80、90后占比接近80%,占绝对优势。...然而最受欢迎的猫其实是中华田园猫,比例超过吸猫人群的一半。其次才是英国短毛猫和美国短毛猫,但这两种猫的比例合起来仅占不到25%。加菲猫和暹罗猫则更少。 ?...中华田园猫的崛起实际上与吸猫人群获取猫的方式有关。其中,通过“捡的”和“领养”方式拥有吸猫资格的人占比过半。 ? “领养代替购买”的呼声已经兴起了很多年。...狗的体重从1磅到99磅(约为0.5-45kg)不等,大型猫的体重也仅在25磅左右(约为11kg),更适合单身人群及职场人群居所的大小。[3] ?
大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 大数据真好玩 点击右侧关注,大数据真好玩! 版权声明: 本文为大数据技术与架构整理,原作者独家授权。未经原作者允许转载追究侵权责任。
在《当推荐系统遇上用户画像:你的画像是怎么来的?》一文中,我们介绍了怎么通过TF-IDF的方式得到用户的画像。而在本文中,我们来聊一下在搜索、推荐、计算广告系统中“画像是怎么用的?”。...而在数字营销的过程中,运营人员或者数据分析同学也是在根据已有的经验,通过用户画像的方式,扩展与历史转化人群相似的人群。比如,通过性别、年龄等筛选出化妆品的受众人群等。显然,这种方式有些粗糙。...而Lookalike技术通过大数据分析和复杂模型学习归纳高质量人群的人口特征,然后在更大的流量范围内,寻找具有类似人口特征的人,从而实现目标的转化。...本题目将为参赛选手提供几百个种子人群、海量候选人群对应的用户特征,以及种子人群对应的广告特征。出于业务数据安全保证的考虑,所有数据均为脱敏处理后的数据。整个数据集分为训练集和测试集。...(7)五大类特征,投放量(click)、投放比例(ratio)、转化率(cvr)、特殊转化率(CV_cvr)、多值长度(length),每类特征基本都做了一维字段和二维组合字段的统计。
简单直接的解决思路实现上述需求的核心是构建如下SQL语句并找到所有满足条件的UserId,其中WHERE条件是什么取决于用户在画像平台上的标签选择和筛选配置。...数据写入时间戳1031004数据写入时间戳1041005数据写入时间戳.........当人群应用到第三方平台时,需要拉取指定人群下的所有UserId数据。...到目前为止,用户可以通过可视化的方式创建人群,人群数据最终存储在Hive表和OSS中,主要借助BitMap对外提供人群数据,其架构如图9-6所示。...ClickHouse支持基于BitMap的人群创建,可以将画像宽表中的数据转换成不同标签的BitMap数据,灌入ClickHouse中之后可以借助BitMap的交并差操作实现人群创建。...图9-8展示了基于BitMap进行人群圈选的实现逻辑。本文节选自《用户画像:平台构建与业务实践》,转载请注明出处。
企业、产品、业务、人等都可以借助数据画像从而更深刻的理解企业经营情况、产品使用情况、业务经营情况、人的健康状况等,依靠数据决策,依靠数据提供的参考,更科学更智慧。...健康码画像让普通大众理解了数据,其实在实际的应用中还有很多针对特定场景的画像,如用户画像、产品画像、业务经营画像等,下面以用户画像为例讲解。 02 什么是用户画像?...3)从数据角度而言,用户画像有助于建立数据资产,挖掘数据的价值。使数据分析更为精确,甚至可以进行数据交易,促进数据互联互通的流通。...04 构建用户画像的具体步骤 1.数据收集:对各系统数据进行梳理、采集,实现基础数据的互联互通,从而为用户画像做数据准备。数据的来源可能来自多个系统,各系统开始是隔离的,需要加工处理整合。...3.数据标准化:用户画像需要整合多源甚至跨系统的数据,如客户可能使用多个设备,拥有移动网络的多个账号,需要把同一个身份ID组合,建立统一的标准,才能完整标识实体的用户画像。
01 PPT预览
目录 前言 1.项目介绍 1.1 项目介绍 1.2 数据介绍 2. 数据整理 3....学生成绩分析 3.1 学生整体成绩分布 3.2 不同学科成绩间的关联度以及不同学生人群擅长科目 3.3 高分学生人群画像 3.3.1 父母学历 3.3.2 学生性别 结束语 import pandas...至此,数据整理结束,我们再次查看此时的数据情况。...3.2 不同学科成绩间的关联度以及不同学生人群擅长科目 我们数据集中共拥有三门学科,分别为读写与数学。我们可以分别将其看做**“文科”与“理科”**,并分别查看不同学科成绩之间的关联度。...3.3 高分学生人群画像 3.3.1 父母学历 下面我们分析高分(均分高于90分)考生的画像,首先我们探究高分与父母受教育程度间的关系。
运营商、互联网巨头也开始对外界提供部分的他们自有的用户数据。而对互联网世界中不同人群进行类型识别和描绘的工作,也有了更简洁的说法——人群画像,或是用户画像。...人群画像的经典构成要素 人群画像从字面理解,是把人群的情况用数据的方式描绘出来。人群画像和个体画像并不完全相同。千万不要混为一谈。 给个体画像,指描述不同个人的过程。...现在,你应该明白,如果有广告商跟你讲,我们持续数月甚至数年积累同一群人PC上的行为数据,本身就是一个不靠谱的忽悠。这方面,只有大的有账号体系的互联网媒体,才做得到。...所以,我们希望的用全网用户数据来给人群画像那根本不可能,所有的人群画像,都只能基于局部的数据。而实现跨设备识别唯一身份,除了少数服务商之外,基本上都只能停留在口头上。...一家新创立不久的数据公司曾经拿出他们号称所有的运营商的原始数据给我看,确实令我大感震惊,这些数据中间不仅仅包含一段时间内某个人访问网站的全部URL信息,还包括他在各个广告公司中的cookie信息,以及他的电话号码
此次比赛是中国移动福建公司提供2018年某月份的样本数据,包括客户的各类通信支出、欠费情况、出行情况、消费场所、社交、个人兴趣等丰富的多维度数据,参赛者通过分析建模,运用机器学习和深度学习算法,准确评估用户消费信用分值...中国移动作为通信运营商拥有海量、广泛、高质量、高时效的数据,如何基于丰富的大数据对客户进行智能评分是中国移动和新大陆科技集团目前攻关的难题。...有了赛题的初步了解,我们接着考虑赛题的意义,主要为四个方面,(1)可直面真实场景数据,可以接触到企业内部真实脱敏的数据,让参赛者在真实业务场景上使用数据;(2)可以交流多种想法,可以接触到企业内部真实脱敏的数据...,让参赛者在真实业务场景上使用数据;(3)进一步提升信用评估方法技能,通过此次参赛可进一步提升参赛选手的对用户信用评分的技能,可以用在用户画像和黑产识别上;(4)加强机器学习应用技能,通过此次参赛可加强如何将算法知识应用在用户给评分的业务场景中...这里将分为四个方面,(1)数据多种数据影响,对数据的预处理,不同类别影响因素对用户信用的影响;(2)同样特征工程,特征在某些模型表现优异,而在另一些模型表现不佳;(3)构建新的特征不同模型采用了不同特征
人群创建成功后会存储在Hive表和OSS中,画像平台用户有时需要拉取人群数据并应用到一些业务中。...比如用户希望在Push平台上针对指定人群下的所有用户推送消息,此时可以使用画像平台接口拉取人群数据;在七夕活动中,运营人员投放使用了多个人群,为了分析不同人群的转化效果,此时需要将人群结果的Hive表提供给数据分析师使用...当调用方通过接口拉取人群数据时,画像平台侧首先从OSS读取人群BitMap数据,然后通过人群BitMap接口返回给调用方。...此时可以将从OSS拉取人群的代码逻辑封装到SDK中,即拉取和解析人群数据在调用方侧执行,从而减少画像平台侧的资源压力。...图5-37展示了通过服务接口对外输出人群数据的流程图,其中包含了人群状态监听和人群数据拉取过程。图片----本文节选自《用户画像:平台构建与业务实践》,转载请注明出处。
伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像?...二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少?...所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。...如何对用户行为数据构建数据模型,分析出用户标签,将是本文着重介绍的内容。 3.2 目标分析 用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。...如,购买权重计为5,浏览计为1 红酒 1 // 浏览红酒 红酒 5 // 购买红酒 综合上述分析,用户画像的数据模型,可以概括为下面的公式:用户标识 + 时间 + 行为类型 + 接触点(网址+内容),某用户因为在什么时间
Scale-adaptive Convolutional Nerual Network https://github.com/miao0913/SaCNN-CrowdCounting-Tencent_Youtu 人群分析...Network for Dense Crowd Counting Caffe: https://github.com/davideverona/deep-crowd-counting_crowdnet 人群数据库...Novel Dataset for Fine-grained Abnormal Behavior Understanding in Crowd 人群异常行为数据库:https://github.com.../hosseinm/med Panic,Fight,Congestion,Obstacle ,Neutral 人群异常检测 Anomaly Detection and Localization in...Crowded Scenes 数据库 http://www.svcl.ucsd.edu/projects/anomaly/ 人群分析 Deep Spatio-Temporal Residual
领取专属 10元无门槛券
手把手带您无忧上云