首页
学习
活动
专区
圈层
工具
发布

Python数组切片_python print数组

X[n0,n1] 切片 X[s0:e0,s1:e1] 切片特殊情况 X[:e0,s1:] 代码实例 numpy数组切片操作 列表用 [ ] 标识,支持字符,数字,字符串甚至可以包含列表(即嵌套)...,是 python 最通用的复合数据类型。 关于索引 从左到右索引默认 0 开始,从右到左索引默认 -1 开始。...一维数组(冒号:) 通过冒号分隔切片参数 start:stop:step 来进行切片操作: import numpy as np a=[1,2,3.4,5] print(a) [ 1 2 3 4 5 ]...类似的,X[n0,n1,n2]表示取三维数组,取N维数组则有N个参数,N-1个逗号分隔。...X[:e0,s1:] 特殊情况,即左边从0开始可以省略X[:e0,s1:e1],右边到结尾可以省略X[s0:,s1:e1],取某一维全部元素X[:,s1:e1],事实上和Python 的 序列切片规则是一样的

3K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python中numpy数组切片

    1、基本概念Python中符合切片并且常用的有:列表,字符串,元组。 下面那列表来说明,其他的也是一样的。 格式:[开头:结束:步长] 开头:当步长>0时,不写默认0。...# 字符串中用法str = 'python'print(str[::]) # pythonprint(str[::1]) # pythonprint(str[::2]) # pto 从左往右数,数2步...-1]) # [2, 1] 先找到下标1的值:2,从右往左取值:[2, 1]print(list[2::-1]) # [3, 2, 1] 先找到下标2的值:3,从右往左取值:[3, 2, 1]2、一维数组通过冒号分隔切片参数...3、二维数组(逗号,)X[n0,n1,n2]表示取三维数组,取N维数组则有N个参数,N-1个逗号分隔。...X[:e0,s1:]特殊情况,即左边从0开始可以省略X[:e0,s1:e1],右边到结尾可以省略X[s0:,s1:e1],取某一维全部元素X[:,s1:e1],事实上和Python 的 序列切片规则是一样的

    4.1K30

    Python NumPy多维数组形状重构

    NumPy 是 Python 中用于数值计算的核心库,其多维数组功能是数据科学和工程计算的基础。在实际工作中,我们经常需要根据需求对数组进行形状重构,例如调整维度、添加或删除轴等。...多维数组的形状与属性 在 NumPy 中,数组的形状由一个元组表示,描述了数组在每个维度上的大小。例如,一个形状为 (3, 4) 的数组表示有 3 行 4 列。...8, 9]]) print("数组:\n", arr) print("数组形状:", arr.shape) 输出: 数组: [[1 2 3] [4 5 6] [7 8 9]] 数组形状:...resize:直接修改数组的形状。 ravel 和 flatten:将多维数组展平成一维。 reshape:灵活调整数组形状 reshape 方法用于创建一个新形状的数组,而不会改变原始数据。...6 7]] ravel 和 flatten:展开数组 将多维数组展平成一维数组是常见的操作,ravel 和 flatten 都能实现这一功能,但它们有一些区别: ravel 返回的是原数组的视图,修改会影响原数组

    83510

    【NumPy学习指南】day4 多维数组的切片和索引

    ndarray支持在多维数组上的切片操作。为了方便起见,我们可以用一个省略号(...)来 表示遍历剩下的维度。...[ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) 多维数组..., 7], [ 8, 9, 10, 11]]) 进而可以选取第1层楼、第2排的所有房间: >>>b[0,1] array([4,5, 6, 7]) (4) 再进一步,我们可以在上面的数组切片中间隔地选定元素...: >>>b[0,::2,-1] array([3, 11]) 如果在多维数组中执行翻转一维数组的命令,将在最前面的维度上翻转元素的顺序,在我们 的例子中将把第1层楼和第2层楼的房间交换: >>>b[:...[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]]) 刚才做了些什么 我们用各种方法对一个NumPy多维数组进行了切片操作

    1.7K20

    【Python深度学习】用NumPy创建多维数组

    Python之所以能成为深度学习领域最受宠的编程语言,其中Python三剑客的NumPy、Pandas和Matplotlib功不可没。这3个库分别用于科学计算、数据分析和数据可视化。...因为NumPy只是用Python作了个外壳,底层逻辑是使用C语言实现的,所以NumPy在运行速度上要远比纯Python代码实现的科学计算库快得多。...使用NumPy可以体验到在原生Python代码上从未体验过的运行速度。 那么NumPy到底有什么功能呢?其实NumPy的功能非常多,主要用于数组计算。...而且这个数组还支持很多Python语言的基础运算,如加法(+)、减法(-)、次方(**)等。...图1 数组运算 3. 创建多维数组 numpy模块的array函数可以生成多维数组。

    2.2K20

    在毕设中学习02——numpy多维数组的切片,形态变化,维度交换

    2022.5.22 文章目录 构建三维数组,并按照指定维度输出 生成一组随机数,摆放为指定矩阵形式 Python中range(start,stop,步长) 生成指定范围,指定步长的一组数 多维数组切片—...—过滤信息 多维矩阵的维度顺序变换 多维矩阵的切片 多维矩阵的形态变化 构建三维数组,并按照指定维度输出 import numpy as np # a=np.arange(0,60,1,dtype=np.floating...shape 可以重构其shape print(a.shape) print(a.reshape(2,5)) #输出 (10,) [[ 1 3 5 7 9] [11 13 15 17 19]] 多维数组切片...numpy as np #按照表达式j*10+i,生成6*6矩阵 a=np.array( [[j*10+i for i in range(6)]for j in range(6)] ) print(a) #多维数组的切片操作...#此处:0-1交换了位置,也就是变换了第一维度和第二维度的顺序 #可用于改变数组形态方便神经网络输入 方法二: a.swapaxes(ax1,ax2) 或者np.swapaxes(a,1,2) 多维矩阵的切片

    97230

    Julia 1.0 正式发布,这是新出炉的一份简单中文教程

    /en/stable/manual/documentation/#Markdown-syntax-1 Julia 里的分支判断也很简单,和很多语言都非常像 多维数组 Julia 也有原生支持的多维数组...CuArray,用于在 N 卡上计算,等等,就不一一列举了它们之中除了自带的数组(类似于 numpy 的多维数组)以外都在外部支持的包里,而所有的这些数组都适用了同样的 Interface。...但是等等,还不止如此,Julia 对多维数组的支持是非常好的,Comprehension 对于多维数组也可以用,用逗号分隔即可 [(i, j) for i in 1:5, j in 1:6] 5...算符来访问 广播(broadcast) 多维数组的广播是一个很重要的特性,也是 Julia 多维数组的标准接口(Interface)任何 Julia 的数组都可以使用广播。...什么是广播简单来说就是将一个函数作用在多维数组,元组,标量的每一个元素上去。这有点像是函数式编程里 map 的概念,但是不完全一样。

    5.5K20

    在Python机器学习中如何索引、切片和重塑NumPy数组

    机器学习中的数据被表示为数组。 在Python中,数据几乎被普遍表示为NumPy数组。 如果你是Python的新手,在访问数据时你可能会被一些python专有的方式困惑,例如负向索引和数组切片。...[How-to-Index-Slice-and-Reshape-NumPy-Arrays-for-Machine-Learning-in-Python.jpg] 在Python机器学习中如何索引、切片和重塑...有关示例,请参阅帖子: 如何在Python中加载机器学习的数据 本节假定你已经通过其他方式加载或生成了你的数据,现在使用Python列表表示它们。 我们来看看如何将列表中的数据转换为NumPy数组。...[11 22] 3.数组切片 到目前为止还挺好; 创建和索引数组看起来都还很熟悉。 现在我们来进行数组切片,对于Python和NumPy数组的初学者来说,这里可能会引起某些问题。...一维切片 你可以通过':'前后不指定任何索引来访问数组维度中的所有数据。

    21.6K90
    领券