首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

复杂模式REcognition的深度学习模型

复杂模式识别(Complex Pattern Recognition)是指在计算机科学和人工智能领域中,通过使用深度学习模型来识别和理解复杂的模式和结构。深度学习模型是一种基于人工神经网络的机器学习方法,它可以通过多层次的神经元网络来模拟人脑的工作原理,从而实现对复杂模式的识别和分析。

深度学习模型在复杂模式识别中具有以下优势:

  1. 高准确性:深度学习模型可以通过大量的训练数据和多层次的神经网络结构,实现对复杂模式的高准确性识别。
  2. 自动特征提取:深度学习模型可以自动学习和提取输入数据中的特征,无需人工手动设计特征,从而减少了特征工程的工作量。
  3. 处理非线性关系:深度学习模型可以处理非线性关系,对于复杂模式中存在的非线性关系具有较好的识别能力。
  4. 可扩展性:深度学习模型可以通过增加网络层数和神经元节点的方式来提升模型的识别能力,具有较好的可扩展性。

复杂模式识别的深度学习模型在许多领域都有广泛的应用,包括但不限于以下几个方面:

  1. 图像识别:深度学习模型可以用于图像识别任务,如人脸识别、物体检测和图像分类等。
  2. 语音识别:深度学习模型可以用于语音识别任务,如语音转文字、语音指令识别和说话人识别等。
  3. 自然语言处理:深度学习模型可以用于自然语言处理任务,如文本分类、情感分析和机器翻译等。
  4. 视频分析:深度学习模型可以用于视频分析任务,如行为识别、动作检测和视频内容理解等。

腾讯云提供了一系列与深度学习相关的产品和服务,包括但不限于:

  1. 腾讯云AI Lab:提供了深度学习平台和工具,支持用户进行深度学习模型的训练和部署。
  2. 腾讯云图像识别:提供了图像识别的API接口,可以实现图像分类、标签识别和人脸识别等功能。
  3. 腾讯云语音识别:提供了语音识别的API接口,可以实现语音转文字和语音指令识别等功能。
  4. 腾讯云自然语言处理:提供了自然语言处理的API接口,可以实现文本分类、情感分析和机器翻译等功能。

更多关于腾讯云深度学习相关产品和服务的详细介绍,请参考腾讯云官方网站:https://cloud.tencent.com/product/ai

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • OCR 【技术白皮书】第一章:OCR智能文字识别新发展——深度学习的文本信息抽取

    信息抽取 (Information Extraction) 是把原始数据中包含的信息进行结构化处理,变成表格一样的组织形式。输入信息抽取系统的是原始数据,输出的是固定格式的信息点,即从原始数据当中抽取有用的信息。信息抽取的主要任务是将各种各样的信息点从原始数据中抽取出来。然后以统一的形式集成在一起,方便后序的检索和比较。由于能从自然语言中抽取出信息框架和用户感兴趣的事实信息,无论是在信息检索、问答系统还是在情感分析、文本挖掘中,信息抽取都有广泛应用。随着深度学习在自然语言处理领域的很多方向取得了巨大成功,循环神经网络(RNN)和卷积神经网络(CNN)也被用于信息抽取研究领域,基于深度学习的信息抽取技术也应运而生。

    04

    初识行为识别

    随着互联网的不断发展,各种应用的不断推广。数据无论从存储,格式,形式,类型等方面都趋向于多样化,丰富化,指数化。数据就是价值,为何这么说呢?在机器学习,深度学习推动下,训练数据需求很大。对于分类模型,训练数据越多,分类器的准确度会在一定程度上更精确。行为识别可以说就是在这基础上演变出来的一个研究分支。那么什么是行为识别呢?我的理解是这样的,比如对于某个图片或者视频中的某个信息进行捕获,我们可以使用特征工程进行特征提取,这些特征提取说白了就是基于对图片局部中像素进行操作,对于视频,我们可以将视频按帧分解成图片,常用工具有ffmpeg,也可以使用python中基于视频分解图片的模块包自行通过调用处理。对于得到的图片,我们可以对其进行特征提取,比如常用的特征提取方法有Haar,Hog等,它们在结合具体的分类器比如adaboost,svm等可以对图片中相关特征精确提取达到一定准确度。有了特征之后,我们可以使用机器学习中分类器或者深度学习中的分类器利用已经得到特征进行训练,之后对未知图片进行预测,这也就达到了行为识别的目的。 行为识别存在问题?由于受到视频背景混乱、闭塞、视点变化等原因,对行动的准确识别是一项极具挑战性的任务,大多数现有方法对拍摄视频的环境做出某些假设。然而,这种假设在现实环境中很少成立。此外,大多数在这些方法都遵循传统的模式模式识别,包括两个步骤,第一步从原始视频中计算并提取特征,第二步通过该特征训练分类器。在现实世界中在场景中,很少知道哪些特征对手头的任务很重要,因为特征的选择是高度依赖问题。特别是对于人类行为识别。 行为识别的发展从哪开始呀?关于行为识别最早开始于19世纪中后期,科学家首先在动物行为方面进行了机械学研究[1]。但是由于当时的计算机不能处理大规模的数据计算,行为识别的研究也没有得到重视。直到20年代末期,关于行为识别的研究也是寥寥可数,当时的研究人员通过采集大量的实验数据进行分析和研究,训练并构建模型,然后匹配模型和行为序列,最终达到行为理解的目的。由于计算量的规模性,当时的研究只能局限于分析简单的行为运动。进入本世纪后,世界上多家名校和研究机构都在行为识别进行了深入研究和探索[2]。在工业界,行为识别可以说占据了普遍优势,如行程规划,用户社交行为,人员调度等领域已经出现了行为识别的相关应用。行为识别和模式识别比较火热的研究话题。 行为识别的的发展如何呢?目前行为识别的主要有两大流派:Two-Stream和C3D。Two-Stream的思想是是基于视频帧图像,其表示的是静态信息和对视频序列中每两帧计算密集光流得到的光流序列,该序列表示的是时序信息,然后利用相关深度网络对它们分别训练出一个模型,在各自网络产生结果后,对结果进行融合;它能有效的从一张图片中识别出行为的类别。利用双流CNN网络分别基于RGB图像和由视频得到的光流序列各自训练一个模型,这两个模型分别对动作进行判断,最后将两这训练结果进行融合,在UCF-101数据库上准确率达到88%,在HMDB51行为数据库达到59.4%[3]。将双流网络改成VGG-16网络,VGG-16卷积神经网络探索了深度与其性能之间的关系,通过反复堆叠33的小型卷积核和22的最大池化层,层数为16层,经实验提高了准确率[4]。C3D对CNN中的卷积(convolution)操作和池化(pooling)操作进行改良,其采用3D卷积核,在时间和空间维度上进行操作,能捕捉到视频流中的运动信息。一个用于人类行为识别的3D CNN架构,该体系结构由1个硬接线层、3个卷积层、2个子采样层和1个全连接层组成,以7帧尺寸为60×40帧作为3D CNN模型的输入。采用不同的卷积规模,最终在TRECVID DATA上的精准率达到了71.37%[5]。 可能对于深入的研究可能还有需要多去研究相关论文,多去动手上机实验。谢谢!

    02

    诺亚方舟实验室李航:深度学习还局限在复杂的模式识别上

    李航认为,深度学习时代的到来是统计学习发展的必然趋势,今后若干年里深度学习还将是研究的热点,会有很多新技术开发出来,利用深度学习的应用也会有革命性的进步。尽管深度学习目前还停留在“复杂的模式识别(pattern recognition)”层面上,但它仍是最有效的方法,会极大推动人工智能的进步。 “如果把实现人工智能的理想比喻为登月,那么有些方法看起来好像是在爬树、在登山,基本不可行,而深度学习的方法好像是在做火箭,它至少能把我们带出地球大气圈,虽然可能还不能达到登月的目的。”他说。 李航还透露,诺亚方舟实验

    010

    深度学习 vs. 大数据:神经网络权值的版权属于谁?

    【编者按】深度神经网络能够焕发新春,大数据功不可没,然而大数据的版权是否应当延伸到深度学习产生的知识,这是一个现实的问题。本文通过ImageNet可视化大数据、Caffe共享深度学习模型和家中训练三个场景审查了深度学习的权值与大数据的关系,介绍了目前的问题和解决方案。文章最后预测深度学习将来可能需要相关的“AI法”。 要获得有用的学习效果,大型多层深度神经网络(又名深度学习系统)需要大量的标签数据。这显然需要大数据,但可用的可视化大数据很少。今天我们来看一个非常著名的可视化大数据来源地,深入了解一下训练过的

    06

    ICDAR 2019表格识别论文与竞赛综述(上)

    表格作为一种有效的数据组织与展现方法被广泛应用,也成为各类文档中常见的页面对象。随着文档数目的爆炸性增长,如何高效地从文档中找到表格并获取内容与结构信息即表格识别,成为了一个亟待解决的问题。ICDAR是一个专注于文档分析与识别问题的国际学术会议,已经连续多届设置了表格识别专题。在今年的ICDAR 2019会议上,有不少研究者在表格检测与结构识别等领域做出了新的贡献,使其有了新的进展。本课题组梳理了该会议中有关表格识别的16篇论文,总结该领域当前的研究进展与挑战。同时,值得注意的是,该会议也举办了关于表格检测与结构识别的比赛,我们对参赛队伍使用的方法与结果进行了一些讨论。

    07

    哪些成为了经典-引用次数最多的10篇机器学习文献

    近40年来机器学习领域产生了数以万计的论文,并以每年上万篇的速度增长。但真正能够称为经典、经受住历史检验、能投入实际应用的并不多。本文整理了机器学习历史上出现的经典论文,按照被引用次数对它们进行了排序,分为top10,被引用次数超过2万,被引用次数超过1万,未来有潜力的文章4部分。它们已经或者在未来具有资格被写入机器学习、深度学习、人工智能的教科书,是一代又一代研究人员为我们留下的宝贵财富。需要说明的是,引用次数对近几年新出现的文章是不公平的,它们还处于高速增长期,但好酒就是好酒,随着时间的沉淀会越来越香。

    04
    领券