首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    [C数值算法]

    本书编写了300多个实用而有效的数值算法C语言程序。其内容包括:线性方程组的求解,逆矩阵和行列式计算,多项式和有理函数的内插与外推,函数的积分和估值,特殊函数的数值计算,随机数的产生,非线性方程求解,傅里叶变换和FFT,谱分析和小波变换,统计描述和数据建模,常微分方程和偏微分方程求解,线性预测和线性预测编码,数字滤波,格雷码和算术码等。全书内容丰富,层次分明,是一本不可多得的有关数值计算的C语言程序大全。本书每章中都论述了有关专题的数学分析、算法的讨论与比较,以及算法实施的技巧,并给出了标准C语言实用程序。这些程序可在不同计算机的C语言编程环境下运行。

    02

    一阶惯性滤波电路图_matlab比例微分环节

    我身边有些朋友说现在在学校学习什么拉氏变换,Z变换,傅立叶变换没有用,传递函数没有用,差分方程没有用,只是纸上谈兵,我这里先就传递函数和拉氏变换和差分方程介绍几点不自量力的看法,我们学习拉氏变换主要是为了从脱离时域,因为时域分析有它的难度指数,我们从时域映射到S域,目的只有一个,那就是简化计算,正如我们在时域要计算卷积过来,卷积过去,我们把它映射到S域过后,就是乘积过来积乘过去,相对来说,乘积要比卷积的积分要温柔的多,然后我们在S域里面得到结论过后,再将其反映射回到时域,然后自然地在时域使用其所得的结论了。

    02

    NeuroImage:经颅直流电刺激(tDCS)如何影响脑功能连接?

    经颅直流电刺激(tDCS)是一种无创的非侵入式神经调控技术,其可以通过微弱的直流电调控皮层神经元的兴奋性。大量的动物和人体实验已经表明tDCS可以引起极性特定的效应而且这种效应并不仅仅局限于刺激位点,这种效应的潜在神经机制可能是突触强度和连接的变化从而引起神经元兴奋性的变化,最终导致特定网络功能的变化。但是,目前仍旧不清楚tDCS会如何影响不同脑区之间的功能连接以及脑功能网络的拓扑参数。来自意大利研究团队曾在NeuroImage杂志发表题目为《Assessing cortical synchronization during transcranial direct current stimulation: A graph-theoretical analysis》的研究论文,对上述问题进行了系统研究。本文对该篇文章进行解读,希望对大家有帮助。

    00

    深度学习+EEG:一种采用单通道EEG检测被试注意力状态的卷积神经网络构架

    脑机接口(BCI)系统可以记录并处理大脑信号并将其转换为输出命令,其可用于各种应用场景,如辅助技术,神经康复和认知增强等。在各种用于脑信号记录的技术中,脑电图(EEG)是BCI研究中研究最多的方法。而基于EEG的认知BCI,旨在评估和增强诸如注意力等认知功能。 之前的研究更多的关注于选取合适的特征,以将其用来对注意力程度进行分类。用于监视专注精神状态的现有技术方法主要与EEG频带中的特定频段有关。大量的研究调查了注意力引起的beta,alpha 和不同频段之间能量比值的变化。总体而言,很多研究认为像beta这样的高频段活动增加是一种注意唤醒的指标,另外一些研究表明θ和β的能量比值、α和θ能量的降低也表明较高的专注程度。 深度学习近年来在语音识别及图像识别领域取得了非常突出的表现,因其可以自动提取相关特征用于分类任务,近年来将深度学习技术应用于EEG数据的研究也逐渐增多。但是深度学习技术应用于认知BCI的研究目前还较少。近期,来自新加坡的研究团队在Journal of Neural Engineering杂志发表题目为《Inter-subject transfer learning with end-to-end deep convolutional neural network for EEG-based BCI》研究论文,其提出了一种深度学习框架,利用单通道EEG信号来检测被试的注意力状态,可以显著提高被试间注意力检测任务的准确性。 材料与方法 1.数据

    00

    经颅电刺激促进睡眠振荡及其功能耦合增强轻度认知障碍患者的记忆巩固

    阿尔茨海默病(Alzheimer’s disease, AD)不仅表现为记忆功能的丧失,而且表现为睡眠生理功能显著恶化,这在轻度认知障碍(mild cognitive impairment, MCI)阶段就已经很明显。睡眠时皮层慢振荡(slow oscillations, SO;0.5-1 Hz)和丘脑皮层纺锤体活动(12-15 Hz)以及它们的时间协调性被认为是记忆形成的关键。我们研究了慢振荡经颅直流电刺激(slow oscillatory transcranial direct current stimulation, so-tDCS)的潜力,该刺激以睡眠状态依赖的方式在白天小睡期间应用,以调节9名男性和7名女性MCI患者的这些活动模式和与睡眠相关的记忆巩固。刺激显著增加了总SO(慢振荡)和纺锤功率,在SO上升阶段放大了纺锤功率,并导致EEG记录中SO和纺锤功率波动之间更强的同步性。此外,与假刺激相比,so-tDCS改善了视觉陈述性记忆,并且视觉陈述性记忆与更强的同步性相关。这些发现为MCI患者的睡眠生理障碍和记忆缺陷提供了一种耐受性良好的治疗方法,并促进了我们对离线记忆巩固的理解。

    02

    EfficientDeRain: Learning Pixel-wise Dilation Filtering for High-EfficiencySingle-Image Deraining

    由于未知的降雨模式,单图像去噪相当具有挑战性。现有的方法通常对降雨模型做出特定的假设,这些假设很难涵盖现实世界中的许多不同情况,这使得它们不得不采用复杂的优化或渐进式重建。然而,这严重影响了这些方法在许多效率关键应用中的效率和有效性。为了填补这一空白,在本文中,我们将单图像去噪视为一个通用的图像增强问题,并最初提出了一种无模型的去噪方法,即Ef finicientDeRain,它能够在10ms内(即平均约6ms)处理降雨图像,比最先进的方法(即RCDNet)快80多倍,同时实现类似的去噪效果。我们首先提出了一种新颖的逐像素膨胀滤波器。 特别是,用从核预测网络估计的逐像素核对雨天图像进行滤波,通过该网络可以有效地预测每个像素的合适的多尺度核。然后,为了消除合成数据和真实数据之间的差距,我们进一步提出了一种有效的数据增强方法(即RainMix),该方法有助于训练网络进行真实的雨天图像处理。我们对合成和真实世界的降雨数据集进行了全面评估,以证明我们的方法的有效性和效率。

    03

    这些电机控制算法有人替你做好了

    曾经在公众号里提到很多电机控制的文章,而电机控制跟我们的工农业密切相关,可以说如果没有电机控制,我们的生活,生产将无法继续,而电机的种类也有很多,像交流异步(ACIM),直流有刷(BDC),直流无刷(BLDC),永磁同步(PMSM),不同的分类还有很多,像步进电机,私服电机,控制电机,等等,而电机的控制需要一些特殊的算法,虽然这些都是很早很经典的算法,但因其复杂,对数学有一定要求,还是有很多工程师搞不明白,更别说用MCU或者DSP去实现这些算法了,而现在你在也不用担心了,很多的厂商都提供基本的电机控制库,这些库有的是用汇编写的,有的是用C语言写的,封装成库,提供给工程师使用,像恩智浦就提供了电机控制的通用库和高级库,以及一些数学公式库,和滤波算法库,虽然厂家提供了这些库,但小猿还是奉劝如果做电机控制的工程师,自己一定要搞懂这些基础的公式算法。今天我们来简单介绍恩智浦的通用电机控制库,供大家参考。目前最新的是4.5的版本,在官网下载下面的库安装文件。直接下一步下一步安装。

    02

    Python+OpenCV的环境安装

    OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,它提供了很多函数,这些函数非常高效地实现了计算机视觉算法(最基本的滤波到高级的物体检测皆有涵盖)。 OpenCV 使用 C/C++ 开发,同时也提供了 Python、Java、MATLAB 等其他语言的接口。如果你不了解 C/C++,请阅读《C语言教程》和《C++教程》。 OpenCV 是跨平台的,可以在 Windows、Linux、Mac OS、Android、iOS 等操作系统上运行。应用领域非常广泛,包括图像拼接、图像降噪、产品质检、人机交互、人脸识别、动作识别、动作跟踪、无人驾驶等。还提供了机器学习模块,你可以使用正态贝叶斯、K最近邻、支持向量机、决策树、随机森林、人工神经网络等机器学习算法。

    01

    婴儿EEG数据的多元模式分析(MVPA):一个实用教程

    时间分辨多变量模式分析(MVPA)是一种分析磁和脑电图神经成像数据的流行技术,它量化了神经表征支持相关刺激维度识别的程度和时间过程。随着脑电图在婴儿神经成像中的广泛应用,婴儿脑电图数据的时间分辨MVPA是婴儿认知神经科学中一个特别有前途的工具。最近,MVPA已被应用于常见的婴儿成像方法,如脑电图和fNIRS。在本教程中,我们提供并描述了代码,以实现婴儿脑电图数据的MVPA分析。来自测试数据集的结果表明,在婴儿和成人,这种方法具有较高的准确性。同时,我们对分类方法进行了扩展,包括基于几何和基于精度的表示相似度分析。由于在婴儿研究中,每个参与者贡献的无伪影脑电图数据量低于儿童和成人研究,我们还探索和讨论了不同参与者水平的纳入阈值对这些数据集中产生的MVPA结果的影响。

    03
    领券