首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于HOG特征的支持向量机车辆分类

基于HOG特征的支持向量机(SVM)车辆分类是一种常见的计算机视觉技术,用于识别和分类图像中的车辆。下面是对该问题的完善和全面的答案:

  1. 概念:基于HOG特征的支持向量机车辆分类是一种基于图像特征提取和机器学习算法的车辆分类方法。它通过提取图像中的HOG(Histogram of Oriented Gradients)特征,并使用支持向量机(SVM)算法进行分类。
  2. 分类:基于HOG特征的支持向量机车辆分类可以将图像中的车辆和非车辆进行分类。
  3. 优势:
    • 高效的特征提取:HOG特征可以有效地描述图像中的边缘和纹理信息,对于车辆分类具有较好的效果。
    • 准确的分类结果:支持向量机是一种强大的分类算法,能够在高维特征空间中进行有效的分类,对于车辆分类任务具有较高的准确性。
    • 对光照和视角变化的鲁棒性:基于HOG特征的支持向量机车辆分类方法对于光照和视角变化具有一定的鲁棒性,能够适应不同场景下的车辆分类任务。
  4. 应用场景:基于HOG特征的支持向量机车辆分类可以应用于以下场景:
    • 智能交通系统:用于实时监测和识别道路上的车辆,提供交通流量统计、违章检测等功能。
    • 自动驾驶:用于识别和跟踪周围车辆,实现自动驾驶决策和控制。
    • 安防监控:用于监控摄像头中的车辆,实现车辆的自动识别和报警。
  5. 推荐的腾讯云相关产品和产品介绍链接地址:

综上所述,基于HOG特征的支持向量机车辆分类是一种常见的计算机视觉技术,适用于车辆分类任务,并且在腾讯云上可以使用相关产品和服务来实现该功能。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 基于支持向量机的手写数字识别详解(MATLAB GUI代码,提供手写板)

    摘要:本文详细介绍如何利用MATLAB实现手写数字的识别,其中特征提取过程采用方向梯度直方图(HOG)特征,分类过程采用性能优异的支持向量机(SVM)算法,训练测试数据集为学术及工程上常用的MNIST手写数字数据集,博主为SVM设置了合适的核函数,最终的测试准确率达99%的较高水平。根据训练得到的模型,利用MATLAB GUI工具设计了可以手写输入或读取图片进行识别的系统界面,同时可视化图片处理过程及识别结果。本套代码集成了众多机器学习的基础技术,适用性极强(用户可修改图片文件夹实现自定义数据集训练),相信会是一个非常好的学习Demo。本博文目录如下:

    05

    A Discriminatively Trained, Multiscale, Deformable Part Model

    本文提出了一种训练有素、多尺度、可变形的目标检测零件模型。在2006年PASCAL人员检测挑战赛中,我们的系统在平均精度上比最佳性能提高了两倍。在2007年的挑战赛中,它在20个类别中的10个项目中都取得了优异的成绩。该系统严重依赖于可变形部件。虽然可变形部件模型已经变得相当流行,但它们的价值还没有在PASCAL挑战等困难的基准测试中得到证明。我们的系统还严重依赖于新方法的甄别培训。我们将边缘敏感的数据挖掘方法与一种形式主义相结合,我们称之为潜在支持向量机。隐式支持向量机与隐式CRF一样,存在非凸训练问题。然而,潜在SVM是半凸的,一旦为正例指定了潜在信息,训练问题就变成了凸的。我们相信,我们的训练方法最终将使更多的潜在信息的有效利用成为可能,如层次(语法)模型和涉及潜在三维姿态的模型。

    04

    ORSIm:A Novel Object Detection Framework in Optical Remote Sensing Imagery Using Spatial-Feature

    近年来,随着星载成像技术的飞速发展,光学遥感图像中的目标检测受到了广泛的关注。虽然许多先进的研究工作都使用了强大的学习算法,但不完全特征表示仍然不能有效地、高效地处理图像变形,尤其是目标缩放和旋转。为此,我们提出了一种新的目标检测框架,称为光学遥感图像检测器(ORSIm检测器),它集成了多种通道特征提取、特征学习、快速图像金字塔匹配和增强策略。ORSIm检测器采用了一种新颖的空频信道特征(SFCF),它综合考虑了频域内构造的旋转不变信道特征和原始的空间信道特征(如颜色信道和梯度幅度)。随后,我们使用基于学习的策略对SFCF进行了改进,以获得高级或语义上有意义的特性。在测试阶段,通过对图像域中尺度因子的数学估计,实现了快速粗略的通道计算。对两种不同的机载数据集进行了大量的实验结果表明,与以往的先进方法相比,该方法具有优越性和有效性。

    01

    Rich feature hierarchies for accurate object detection and semantic segmentation

    在PASCAL VOC标准数据集上测量的目标检测性能在最近几年趋于稳定。性能最好的方法是复杂的集成系统,它通常将多个低层图像特性与高层上下文结合起来。在本文中,我们提出了一种简单、可扩展的检测算法,相对于之前VOC 2012的最佳检测结果,平均平均精度(mAP)提高了30%以上,达到了53.3%。我们的方法结合了两个关键的方法:(1)为了定位和分割目标,可以一次将高容量应用卷积神经网络(cnn)自下而上的区域建议(2)标记的训练数据稀缺时,监督为辅助训练的任务,其次是特定于域的微调,收益率显著的性能提升。由于我们将区域建议与CNNs相结合,我们将我们的方法称为R-CNN:具有CNN特性的区域。我们还将R-CNN与OverFeat进行了比较,OverFeat是最近提出的一种基于类似CNN架构的滑动窗口检测器。在200类ILSVRC2013检测数据集上,我们发现R-CNN比OverFeat有较大的优势。

    02

    Histograms of Oriented Gradients for Human Detection

    以基于线性SVM的人体检测为例,研究了鲁棒视觉目标识别的特征集问题。在回顾了现有的基于边缘和梯度的描述符之后,我们通过实验证明了方向梯度(HOG)描述符的直方图网格在人类检测方面明显优于现有的特征集。我们研究了计算的各个阶段对性能的影响,得出结论:在重叠描述符块中,细尺度梯度、细方向边距、相对粗的空间边距和高质量的局部对比度归一化都是获得良好结果的重要因素。新方法在原有MIT行人数据库的基础上实现了近乎完美的分离,因此我们引入了一个更具挑战性的数据集,其中包含1800多张带注释的人类图像,具有大范围的姿态变化和背景。

    04

    教你一招!如何用技术实现时序羽毛球动作预测

    引言:随着计算机视觉领域中视频动作识别技术的发展,体育动作识别研究在统计运动动作特点、运动学研究、体育教学展示等方面的应用越来越广泛。对于各种球类比赛,依据比赛类型, 可以将它们的结构特征分为时间和比分两种类型。时间类型的体育项目如篮球、足球和橄榄球等,在比赛过程中没有属于某一方球员专门的区域,双方球员在位置上处于混合交错状态,在一定时间间隔内通过团队合作来取得比赛的胜利。比分类型的项目包括网球、羽毛球、乒乓球等,比赛时双方球员始终在属于自己的区域内运动,和对手在位置上处于对峙状态,这种类型通常是球员经过自身水平的发挥来赢取比赛。观看该类比赛时,观众往往会关注球员的动作特点。

    03

    YOLOPoint开源 | 新年YOLO依然坚挺,通过结合YOLOv5&SuperPoint,成就多任务SOTA

    关键点通常是指Low-Level 的Landmark,如点、角点或边缘,它们可以从不同的视角轻松检索。这使得移动车辆能够估计其相对于周围环境的位置和方向,甚至可以使用一个或多个相机执行闭环(即同时定位与地图构建,SLAM)。在历史上,这项任务是通过手工设计的特征描述子来完成的,如ORB,SURF,HOG,SIFT。然而,这些方法要么不支持实时处理,要么在光照变化、运动模糊等干扰下表现不佳,或者检测到的关键点是聚集成簇而不是在图像中分散,这降低了姿态估计的准确性。学习到的特征描述子旨在解决这些问题,通常通过以随机亮度、模糊和对比度的形式进行数据增强。

    01

    机器学习三人行(系列七)----支持向量机实践指南(附代码)

    其实逻辑回归算法和今天要讲的支持向量机有些类似,他们都是从感知机发展而来,支持向量机是一个非常强大而且应用面很广的机器学习算法,能够胜任线性分类器,非线性分类器,线性回归问题,非线性回归问题中,甚至是离群值检测中,是应用最广泛的机器学习算法之一,本文剖析支持向量机在实践中的应用。 一、线性支持向量机 我们以一些图来解释支持向量机的基本原理,下图是对鸢尾花数据集分类,可以发现两种花能够很轻松的通过直线划分出来,因为该数据集是线性可分的,左图是三种可能的分类方式,虚线基本没有办法将两种类别划分,另外

    012

    机器学习三人行-支持向量机实践指南

    关注公众号“智能算法”即可一起学习整个系列的文章。 文末查看本文代码关键字,公众号回复关键字下载代码。 其实逻辑回归算法和今天要讲的支持向量机有些类似,他们都是从感知机发展而来,支持向量机是一个非常强大而且应用面很广的机器学习算法,能够胜任线性分类器,非线性分类器,线性回归问题,非线性回归问题中,甚至是离群值检测中,是应用最广泛的机器学习算法之一,本文剖析支持向量机在实践中的应用。 一、线性支持向量机 我们以一些图来解释支持向量机的基本原理,下图是对鸢尾花数据集分类,可以发现两种花能够很轻松的通过直线划分出

    09
    领券