BP神经网络现在来说是一种比较成熟的网络模型了,因为神经网络对于数字图像处理的先天优势,特别是在图像压缩方面更具有先天的优势,因此,我这一段时间在研究神经网络的时候同时研究了一下关于BP网络实现图像压缩的原理和过程...数字图像压缩实际上是以较少的比特数有损或者无损的来表示原来像素矩阵的一种图像处理技术,实际上就是减少图像数据中的时间冗余,空间冗余,频谱冗余等等作为目的,从而同过减少上述的一种或者多种冗余的信息而达到更加高效的存储与传输数据....图像的压缩系统其实无论采用什么样的具体的架构或者技术方法,基本的过程都是一致的,主要还是可以概述为编码,量化,解码这三个部分,流程图如下:
?....
3:基于MATLAB的BP神经网络图像压缩过程的分析:
因为在MATLAB上应用BP神经网络对于数字图像进行压缩主要包括训练样本构造,仿真以及图像重建这三个环节.
1:训练样本的构建
因为我的机器的性能不够...从压缩后的视觉效果来看,隐藏层的神经网络节点数一定范围内影响了图像的压缩效果,当隐藏层节点的数目较多时,压缩比较低,压缩的重建的图像的质量比较好,但是这样的影响不是成线性的.同时网络的训练的好坏也是对图像压缩有很显著的影响