用Python做数据分析光是掌握numpy和matplotlib可不够,Pandas是必须要掌握的一个重点,numpy虽然能够帮我们处理处理数值型数据,但是这还不够,很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等,比如:我们通过爬虫获取到了存储在数据库中的数据。
Pandas 的主要数据结构是 Series(一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。对于 R 用户,DataFrame 提供了比 R 语言 data.frame 更丰富的功能。Pandas 基于 NumPy 开发,可以与其它第三方科学计算支持库完美集成。
我们都知道,Numpy 是 Python 环境下的扩展程序库,支持大量的维度数组和矩阵运算;Pandas 也是 Python 环境下的数据操作和分析软件包,以及强大的数据分析库。二者在日常的数据分析中都发挥着重要作用,如果没有 Numpy 和 Pandas 的支持,数据分析将变得异常困难。但有时我们需要加快数据分析的速度,有什么办法可以帮助到我们吗?
大家都知道Pandas和NumPy函数很棒,它们在日常分析中起着重要的作用。没有这两个函数,人们将在这个庞大的数据分析和科学世界中迷失方向。
在本文中,数据和分析工程师 Kunal Dhariwal 为我们介绍了 12 种 Numpy 和 Pandas 函数,这些高效的函数会令数据分析更为容易、便捷。最后,读者也可以在 GitHub 项目中找到本文所用代码的 Jupyter Notebook。
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的博客 🍊个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 🥭本文内容:Python 数据处理:Pandas库的使用 ---- Python 数据处理:Pandas库的使用 1.Pandas 数据结构 1.1 Series 1.2 DataFrame 2.基本功能 2.1 重新索引 2.2 丢弃指定轴上的项 2.3 索引、选取和过滤 2.4 用 loc 和 iloc 进行选取 2.5
在数据分析与机器学习中,经常会遇到处理数据的问题。而使用Python进行数据处理和分析时,pandas库和numpy库是常用的工具。其中,pandas库提供了DataFrame数据结构,numpy库提供了ndarray数据结构。然而,有时候我们会遇到DataFrame格式数据与ndarray格式数据不一致导致无法进行运算的问题。本文将介绍一种解决这个问题的方法。
Pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的。pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使python成为强大而高效的数据分析环境的重要因素之一。
在数据分析中,数据的选择和运算是非常重要的步骤。数据选择和运算是数据分析中的基础工作,正确和高效的选择和运算方法对于数据分析结果的准确性和速度至关重要。
这两行代码导入了 numpy 和 pandas 库。numpy 是 Python 中用于科学计算的基础库,提供了大量的数学函数工具,特别是对于数组的操作。pandas 是基于 numpy 构建的一个提供高性能、易用数据结构和数据分析工具的库。在本段代码中,numpy 用于生成随机数数组和执行数组操作,pandas 用于创建和操作 DataFrame。
Pandas中有一个警告,很有意思,并且出现频率很高,它就是 SettingWithCopyWarning, 既然是个警告,那么我们是不是可以忽略呢。就像标题说的那样,万万不可。并且,这个警告还要引起我们足够重视。知道为什么会出现这个警告,并知道怎么解决,或许帮助你真正从pandas的被动使用者,变为一个Pandas专家。
Python之Pandas中Series、DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一
NumPy,即 Numerical Python,是 Python 中最重要的数值计算基础包之一。许多提供科学功能的计算包使用 NumPy 的数组对象作为数据交换的标准接口之一。我涵盖的关于 NumPy 的许多知识也适用于 pandas。
玩转Pandas系列已经连续推送4篇,尽量贴近Pandas的本质原理,结合工作实践,按照使用Pandas的逻辑步骤,系统地并结合实例推送Pandas的主要常用功能,已经推送的4篇文章:
Pandas 是基于 NumPy 的一个开源 Python 库,它被广泛用于快速分析数据,以及数据清洗和准备等工作。它的名字来源是由“ Panel data”(面板数据,一个计量经济学名词)两个单词拼成的。简单地说,你可以把 Pandas 看作是 Python 版的 Excel。
看本文之前先看看Panda是概览,大致了解一下:数据分析篇 | Pandas 概览
作为程序员,你的电脑里、书架上,一定少不了 Python 的资料和课程。免费的电子书,花钱买的课,实体书籍...
head() 与 tail() 用于快速预览 Series 与 DataFrame,默认显示 5 条数据,也可以指定要显示的数量。
在当今数字化时代,数据分析已经变得不可或缺。而Python,作为一种通用编程语言,其丰富的库和强大的功能使得它成为数据分析领域的佼佼者。Python数据分析模块,正是这一领域的核心组成部分,为数据科学家和工程师提供了强大的武器库。
本文接着更新Pandas进阶修炼120题,Pandas的强大不仅仅因为它自身的强大,更在于当它和NumPy、Matplotlib、Sklearn等库结合使用时发挥的巨大威力,本期就挑选了一些Pandas+NumPy相关的题目供各位读者练习,如果感兴趣,请一定要敲一遍代码。
本系列参考自「Python Data Science Handbook」第三章,旨在对 Pandas 库的使用方法进行归纳与总结。
Polars[2]是Pandas最近的转世(用Rust编写,因此速度更快,它不再使用NumPy的引擎,但语法却非常相似,所以学习 Pandas 后对学习 Polars 帮助非常大。
教程地址:http://www.showmeai.tech/tutorials/33
本文将介绍Numpy的基本语法,包括数组的创建、索引和切片、数学运算、广播和聚合等功能,以帮助读者快速上手和熟练使用Numpy进行数值计算。
Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。经过多年不懈的努力,Pandas 离这个目标已经越来越近了。
Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。
本文使用Python建立对数据的理解。我们会分析变量的分布,捋清特征之间的关系。最后,你会学习给样本分层,并将数据集拆分成测试集与训练集。
在我看来,对于Numpy以及Matplotlib,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础。而Scipy(会在接下来的帖子中提及)当然是另一个主要的也十分出色的科学计算库,但是我认为前三者才是真正的Python科学计算的支柱。
pandas 提供了快速便捷处理结构化数据的大量数据结构和函数。自从2010年出现以来,它助使 Python 成为强大而高效的数据分析环境。pandas使用最多的数据结构对象是 DataFrame,它是一个面向列(column-oriented)的二维表结构,另一个是 Series,一个一维的标签化数组对象。
在最基本的层面上,Pandas 对象可以认为是 NumPy 结构化数组的增强版本,其中行和列用标签而不是简单的整数索引来标识。我们将在本章的过程中看到,Pandas 在基本数据结构之上提供了许多有用的工具,方法和功能,但几乎所有后续内容都需要了解这些结构是什么。因此,在我们继续之前,让我们介绍这三个基本的 Pandas 数据结构:Series,DataFrame和Index。
已有DataFrame(long),现在想新建一个DataFrame(tCG),但是保有原来a的索引:
机器学习、深度学习在用Python时,我们要用到NumPy和Pandas库。今天我和大家一起来对这两个库的最最基本语句进行学习。希望能起到抛砖引玉的作用,目前处于入门阶段,而且第一次发文,哪里出现错误
玩转Pandas系列已经连续推送5篇,尽量贴近Pandas的本质原理,结合工作实践,按照使用Pandas的逻辑步骤,系统地并结合实例推送Pandas的主要常用功能,已经推送的5篇文章:
python 3.6.8 Windows x86 executable installer
在前一章中,我们详细介绍了 NumPy 及其ndarray对象,它在 Python 中提供了密集类型数组的高效存储和操作。在这里,通过详细了解 Pandas 库提供的数据结构,我们将构建这些知识。
pandas中有两类非常重要的数据结构,就是序列Series和数据框DataFrame.Series类似于NumPy中的一维数组,可以使用一维数组的可用函数和方法,而且还可以通过索引标签的方式获取数据,还具有索引的自动对齐功能;DataFrame类似于numpy中的二维数组,同样可以使用numpy数组的函数和方法,还具有一些其它灵活的使用。
NumPy(Numerical Python的简称)是Python科学计算的基础包。
获取行操作df.loc[3:6]获取列操作df['rowname']取两列df[['a_name','bname']] ,里面需要是一个 list 不然会报错增加一列df['new']=list([...])对某一列除以他的最大值df['a']/df['a'].max()排序某一列df.sorted_values('a',inplace=True,ascending=True) , inplace 表示排序的时候是否生成一个新的 dataFrame , ascending=True 表示升序,默认为升序,如果存在缺失的补值( Nan ),排序的时候会将其排在末尾
如果你在编程的时候发现自己一遍又一遍的搜索同一个问题、概念或者语法,那么你并不孤单。
前2篇分别系统性介绍了numpy和matplotlib的入门基本知识,今天本文自然是要对pandas进行入门详细介绍,通过本文你将系统性了解pandas为何会有数据分析界"瑞士军刀"的盛誉。
开发工具:PyCharm Community Edition 2021.3.1(或Jupyter Lab) 【pip install jupyter lab】
在 NumPy 中,结构化数组允许我们创建具有复杂数据类型的数组,类似于表格或数据库中的行。这对于处理异质数据集非常有用。在本篇博客中,我们将深入介绍 NumPy 中的结构化数组,并通过实例演示如何创建、访问和操作结构化数组。
领取专属 10元无门槛券
手把手带您无忧上云