如果需要训练的数据大小不大,例如不到1G,那么可以直接全部读入内存中进行训练,这样一般效率最高。
随着深度学习模型的复杂度和数据量的增加,单一设备的计算能力往往无法满足训练需求。分布式训练和模型并行化技术可以有效地加速模型训练过程,提高计算效率。本文将介绍如何使用Python实现深度学习模型的分布式训练与模型并行化。
在深度学习时代,训练数据特别大的时候想要单卡完成训练基本是不可能的。所以就需要进行分布式深度学习。在此总结下个人近期的研究成果,欢迎大佬指正。
使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果,或者是需要并行训练数据的时候就会显示OOM显存容量不足的错误。以下简称在训练一个任务的时候需要去测试结果,或者是需要并行训练数据为进行新的运算任务。
Python 之于机器学习,可以说是最为锋利的武器;而机器学习之于 Python,则有着扩大影响再造辉煌的助力。二者相辅相成,以至于一提到机器学习,人们自然而然的就想到了 Python,虽然有些狭隘,但是背后也有其存在的必然性!
来源:大数据与机器学习文摘本文约2600字,建议阅读9分钟本文为你介绍2021年最为重要的10个 Python 机器学习相关的第三方库。 Python 之于机器学习,可以说是最为锋利的武器;而机器学习之于 Python,则有着扩大影响再造辉煌的助力。二者相辅相成,以至于一提到机器学习,人们自然而然地就想到了 Python,虽然有些狭隘,但是背后也有其存在的必然性! 今天我们就来介绍2021年最为重要的10个 Python 机器学习相关的第三方库,不要错过哦 一、TensorFlow 1. 什么 Tenso
有了能做出惊人预测的模型之后,要做什么呢?当然是部署生产了。这只要用模型运行一批数据就成,可能需要写一个脚本让模型每夜都跑着。但是,现实通常会更复杂。系统基础组件都可能需要这个模型用于实时数据,这种情况需要将模型包装成网络服务:这样的话,任何组件都可以通过REST API询问模型。随着时间的推移,你需要用新数据重新训练模型,更新生产版本。必须处理好模型版本,平稳地过渡到新版本,碰到问题的话需要回滚,也许要并行运行多个版本做AB测试。如果产品很成功,你的服务可能每秒会有大量查询,系统必须提升负载能力。提升负载能力的方法之一,是使用TF Serving,通过自己的硬件或通过云服务,比如Google Cloud API平台。TF Serving能高效服务化模型,优雅处理模型过渡,等等。如果使用云平台,还能获得其它功能,比如强大的监督工具。
导读:近几年随着深度学习算法的发展,出现了许多深度学习框架。这些框架各有所长,各具特色。常用的开源框架有TensorFlow、Keras、Caffe、PyTorch、Theano、CNTK、MXNet、PaddlePaddle、Deeplearning4j、ONNX等。
Keras简单而优雅,类似于scikit-learn。然而,它非常强大,能够实施和训练最先进的深度神经网络。
近年来,深度学习在很多机器学习领域都有着非常出色的表现,在图像识别、语音识别、自然语言处理、机器人、网络广告投放、医学自动诊断和金融等领域有着广泛应用。面对繁多的应用场景,深度学习框架有助于建模者节省大量而繁琐的外围工作,更聚焦业务场景和模型设计本身。
Keras 2.X版本后可以很方便的支持使用多GPU进行训练了,使用多GPU可以提高我们的训练过程,比如加速和解决内存不足问题。
TensorFlow和PyTorch是两个最受欢迎的开源深度学习框架,这两个框架都为构建和训练深度学习模型提供了广泛的功能,并已被研发社区广泛采用。但是作为用户,我们一直想知道哪种框架最适合我们自己特定项目,所以在本文与其他文章的特性的对比不同,我们将以实际应用出发,从性能、可伸缩性和其他高级特性方面比较TensorFlow和PyTorch。
想要真的了解深度学习,除了看视频,拿数据和算力真枪实弹的练手可能比各种理论知识更重要。
对于学习数据科学的同学来说,从头开始实现神经网络,会让你理解很多有趣的东西。但是,我并不认为在真实数据集上构建深度学习模型是个明智的做法,除非你有数天或数周的时间来等待模型的构建。那么对于绝大部分无法获得无限资源的人来说,使用易于使用的开源深度学习框架,我们可以立即实现如卷积神经网络这样的复杂模型。
众所周知,深度学习是因为 2010 年代英伟达 GPU 算力提升而快速发展起来的,不过如今市面上还有多种品牌的显卡,它们同样拥有不错的性能,后者能不能成为 AI 模型算力的基础呢?
问耕 编译整理 量子位 出品 | 公众号 QbitAI 前几天,量子位发过一篇《忽悠VC指南》。其中有一条建议是,当你假装AI专家时,最好别谈众人皆知的TensorFlow,那谈什么? PyTorch
自深度学习重新获得公认以来,许多机器学习框架层出不穷,争相成为研究人员以及行业从业人员的新宠。从早期的学术成果 Caffe、Theano,到获得庞大工业支持的 PyTorch、TensorFlow,许多研究者面对大量的学习框架不知该如何选择?
深度学习的框架Tensorflow,Pytorch,Keras,Theano..,每个都有它自身的优势,有的性能好,有的学习曲线平滑,有的部署方便。
Keras处于高度集成结构。 虽然更简单创立模型,但是面临杂乱的网络结构时或许不如TensorFlow。
【磐创AI导读】:本系列文章介绍了与tensorflow的相关知识,包括其介绍、安装及使用等。本篇文章将接着上篇文章继续介绍它的安装及部分使用。查看上篇:文末福利|一文上手TensorFlow2.0(一)。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
目前为止,我们只是使用了TensorFlow的高级API —— tf.keras,它的功能很强大:搭建了各种神经网络架构,包括回归、分类网络、Wide & Deep 网络、自归一化网络,使用了各种方法,包括批归一化、dropout和学习率调度。事实上,你在实际案例中95%碰到的情况只需要tf.keras就足够了(和tf.data,见第13章)。现在来深入学习TensorFlow的低级Python API。当你需要实现自定义损失函数、自定义标准、层、模型、初始化器、正则器、权重约束时,就需要低级API了。甚至有时需要全面控制训练过程,例如使用特殊变换或对约束梯度时。这一章就会讨论这些问题,还会学习如何使用TensorFlow的自动图生成特征提升自定义模型和训练算法。首先,先来快速学习下TensorFlow。
作为数据科学和机器学习相关的研究和开发人员,大家每天都要用到 python。在本文中,我们将讨论一些 python 中的顶级库,开发人员可以使用这些库在现有的应用程序中应用、清洗和表示数据,并进行机器学习研究。
毫无疑问,Python是最流行的语言之一,其成功的原因之一是它为科学计算提供了广泛的报道。 在这里,我们仔细研究用于机器学习和数据科学的十大Python工具。学会这些,程序员年薪百万没问题,工资都快溢出银行卡。
TensorFlow 是一款非常流行的开源库,它是由Google与Brain Team合作开发而成,主要用于机器学习类应用的开发。
Python 是最流行和使用最广泛的编程语言之一,它已经取代了业界许多编程语言。python 在开发人员中流行的原因有很多。然而,最重要的一点是它有大量的库供用户使用。
深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。
如果您使用过 TensorFlow 1.x,则本部分将重点介绍迁移到 TensorFlow 2.0 所需的总体概念更改。 它还将教您使用 TensorFlow 可以进行的各种 AIY 项目。 最后,本节向您展示如何将 TensorFlow Lite 与跨多个平台的低功耗设备一起使用。
本文将通过拆解SmallVGGNet的架构及代码实例来讲解如何运用Keras进行多标签分类。
现在机器学习逐渐成为行业热门,经过二十几年的发展,机器学习目前也有了十分广泛的应用,如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、DNA序列测序、语音和手写识别、战略游戏和
本文为雷锋字幕组编译的技术博客,原标题 The 5 Deep Learning Frameworks Every Serious Machine Learner Should Be Familiar With,作者为James Le。
对此,Keras 提出者、谷歌科学家 François Chollet 表示,这是一份非常详尽的介绍。
深度学习发展势头迅猛,但近两年涌现的诸多深度学习框架让初学者无所适从。如 Google 的 TensorFlow、亚马逊的 MXNet、Facebook 支持的 PyTorch、Theano、Caffe、CNTK、Chainer、百度的 PaddlePaddle、DSSTNE、DyNet、BigDL、Neon 等等。
本书的这一部分将为您简要概述 TensorFlow 2.0 中的新增功能,与 TensorFlow 1.x 的比较,惰性求值和急切执行之间的差异,架构级别的更改以及关于tf.keras和Estimator的 API 使用情况。
「大新闻:我们刚刚发布了 Keras 3.0 版本!」Keras 之父 François Chollet 在 X 上激动的表示。「现在你可以在 JAX、TensorFlow 以及 PyTorch 框架上运行 Keras……」
本文梳理了tf 2.0以上版本的API结构,用于帮助国内的初学者更好更快的了解这个框架,并为检索官方的API文档提供一些关键词。
从 2018 年 10 月到 2019 年 6 月,NLP 三大模型横空出世,分别是 Google 的 BERT,OpenAI 的 GPT-2 和 CMU 和 Google 联手的 XLNet。
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/75633754
近日,斯坦福大学计算机科学系博士生 Awni Hannun 也发表了一篇文章,谈了自己对 PyTorch 和 TensorFlow 这两大明星框架的心得体验,并在不同的方面对这两者进行了比较,我们对本
选自GitHub 作者:Awni Hannun 机器之心编译 参与:Panda 现在是各种机器学习框架群雄争霸的时代,各种各样的比较文章也层出不穷。近日,斯坦福大学计算机科学系博士生 Awni Hannun 也发表了一篇文章,谈了自己对 PyTorch 和 TensorFlow 这两大明星框架的心得体验,并在不同的方面对这两者进行了比较,机器之心对本文进行了编译介绍。 这篇指南主要介绍了我找到的 PyTorch 和 TensorFlow 之间的不同之处。这篇文章的目的是帮助那些想要开始一个新项目或从一种深度
机器之心报道 机器之心编辑部 JAX 是机器学习 (ML) 领域的新生力量,它有望使 ML 编程更加直观、结构化和简洁。 在机器学习领域,大家可能对 TensorFlow 和 PyTorch 已经耳熟能详,但除了这两个框架,一些新生力量也不容小觑,它就是谷歌推出的 JAX。很对研究者对其寄予厚望,希望它可以取代 TensorFlow 等众多机器学习框架。 JAX 最初由谷歌大脑团队的 Matt Johnson、Roy Frostig、Dougal Maclaurin 和 Chris Leary 等人发起。
在用了一段时间的Keras后感觉真的很爽,所以特意祭出此文与我们公众号的粉丝分享。 Keras是一个非常方便的深度学习框架,它以TensorFlow或Theano为后端。用它可以快速地搭建深度网络,灵活地选取训练参数来进行网路训练。总之就是:灵活+快速!
将Keras权值矩阵保存为简短的动画视频,从而更好地理解你的神经网络模型是如何学习的。下面是第一个LSTM层的例子,以及一个经过一个学习周期训练的6级RNN模型的最终输出层。蓝色代表低值,红色代表高值
AI 科技评论按:关于深度学习的框架之争一直没有停止过。PyTorch,TensorFlow,Caffe还是Keras ?近日, 斯坦福大学计算机科学博士生Awni Hannun就发表了一篇文章,对比当前两个主流框架PyTorch和TensorFlow。 AI 科技评论编译如下: 这篇指南是我目前发现的PyTorch和TensorFlow之间的主要差异。写这篇文章的目的是想帮助那些想要开始新项目或者转换深度学习框架的人进行选择。文中重点考虑训练和部署深度学习堆栈组件时框架的可编程性和灵活性。我不会权衡速度、
领取专属 10元无门槛券
手把手带您无忧上云