首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Python机器学习中如何索引、切片和重塑NumPy数组

机器学习中的数据被表示为数组。 在Python中,数据几乎被普遍表示为NumPy数组。 如果你是Python的新手,在访问数据时你可能会被一些python专有的方式困惑,例如负向索引和数组切片。...在本教程中,你将了解在NumPy数组中如何正确地操作和访问数据。 完成本教程后,你将知道: 如何将你的列表数据转换为NumPy数组。 如何使用Pythonic索引和切片访问数据。...[How-to-Index-Slice-and-Reshape-NumPy-Arrays-for-Machine-Learning-in-Python.jpg] 在Python机器学习中如何索引、切片和重塑...对于输入要素,在行索引中我们可以通过指定':'来选择最后一行外的所有行和列,并且在列索引中指定-1。...(3, 2) (3, 2, 1) 概要 在本教程中,你了解了如何使用Python访问和重塑NumPy数组中的数据。 具体来说,你了解到: 如何将你的列表数据转换为NumPy数组。

19.1K90

NumPy和Pandas中的广播

例如,有一项研究测量水的温度,另一项研究测量水的盐度和温度,第一个研究有一个维度;温度,而盐度和温度的研究是二维的。维度只是每个观测的不同属性,或者一些数据中的行。...在正常情况下,NumPy不能很好地处理不同大小的数组。...在二维数组中,广播规则同样适用,请参见如下代码。...但是我们肯定不希望这样,所以需要构造lambda表达式来只在单元格中的值是一个映射键时替换这些值,在本例中是字符串' male '和' female ' df.applymap(lambda x: mapping...总结 在本文中,我们介绍了Numpy的广播机制和Pandas中的一些广播的函数,并使用泰坦尼克的数据集演示了pandas上常用的转换/广播操作。

1.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    详解 Numpy 中的视图和副本

    在编程的过程中很可能会使用到原数组,这就涉及到视图和副本的概念,简单来说视图与副本是使用原数组的两种不同的方式。...简单来说,数组数据结构信息区中有 Numpy 数组的形状(shape)以及数据类型(data-type)等信息,而数据存储区则是用于存储数组的数据,「Numpy 数组中的数据可以指向其它数组中的数据,这样多个数组可以共用同一个数据...None,说明a和a[1, 2]两个数组中的数据都来自于自己,不是来自别的数组。...Numpy 数组所占的内存空间包含两个部分,数据结构信息区以及数据存储区,使用nbytes属性可以查看数组中的数据所占的字节数。...既然副本和原数组是相互独立的,改变副本或者原数组中的元素值,相对应的原数组和副本中的元素值并不会发生改变。

    1.1K20

    python中numpy.array_对numpy中array和asarray的区别详解

    参考链接: Python中的numpy.asarray array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存..., 2, 1], [1, 1, 1]]  arr2:  [[1 1 1]  [1 1 1]  [1 1 1]]  arr3:  [[1 1 1]  [1 1 1]  [1 1 1]]  可见array和asarray...import numpy as np  #example 2:  arr1=np.ones((3,3))  arr2=np.array(arr1)  arr3=np.asarray(arr1)  arr1...此时两者才表现出区别  以上这篇对numpy中array和asarray的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。  ...本文标题: 对numpy中array和asarray的区别详解  本文地址: http://www.cppcns.com/jiaoben/python/225289.html

    63000

    numpy数组中冒号和负号的含义

    numpy数组中":"和"-"的意义 在实际使用numpy时,我们常常会使用numpy数组的-1维度和":"用以调用numpy数组中的元素。也经常因为数组的维度而感到困惑。...总体来说,":"用以表示当前维度的所有子模块 "-1"用以表示当前维度所有子模块最后一个,"负号用以表示从后往前数的元素,-n即是表示从后往前数的第n个元素"#分片功能 a[1: ] 表示该列表中的第1...个元素到最后一个元素,而,a[ : n]表示从第0个元素到第n个元素(不包括n) import numpy as np POP_SIZE = 3 total_size = 10 idx = np.arange...[7 8 9] # good_idx_2 [0 1 2 3 4 5 6] # good_idx_3 [3 4 5 6 7 8 9] # good_idx_4 [0 1 2] 测试代码 import numpy...'s') # 在这个模块中有三个小的模块,所以程序运行两次 # s # s # s print('b1[-1:]\n', b1[-1:]) # 写在最后一个维度的":"没有实质性作用,此处表示的意思和b1

    2.2K20

    Python-Numpy中array和matrix的用法

    参考链接: Python中的numpy.bmat python当中科学运算库numpy可以节省我们很多运算的步骤,但是这里和matlab中又有一点点不一样,matrix和array之间的关系和区别是什么呢...Numpy 中不仅提供了 array 这个基本类型,还提供了支持矩阵操作的类 matrix,但是一般推荐使用 array:  很多 numpy 函数返回的是 array,不是 matrix 在 array...中,逐元素操作和矩阵操作有着明显的不同 向量可以不被视为矩阵 具体说来:  dot(), multiply(),* array:* -逐元素乘法,dot() -矩阵乘法 matrix:* -矩阵乘法,...v 在 dot(A,v) 被看成列向量,在 dot(v,A) 中被看成行向量,这样省去了转置的麻烦 [BAD!].../ 是逐元素操作 当然在实际使用中,二者的使用取决于具体情况。

    1.4K00

    OpenCV基础 | 3.numpy在图像处理中的基本使用

    作者:小郭学数据 源自:快学python 学习视频可参见python+opencv3.3视频教学 基础入门 今天写的是numpy在图像处理中的基本使用 1.获取图片高宽通道及图像反转 # 获取图片高宽通道及图像反转...cv.imshow('pixels_demo', image) 输出结果如下: (512, 512, 3) width: 512, height: 512, channels: 3 原图和反转图对比图如下...cv.imshow("inverse_demo", dst) 所用时间 time: 100.06570666666667 ms 能调用API的尽量使用API接口,提升效率 2.制作图像 单通道和三通道图像制作代码如下...255,得到的图像为绿色 img2[:,:,1]=np.ones([400,400])*255 cv.imshow("threechannels_image",img2) 构造的单通道和三通道图像如下...3.改变像素值 m1=np.ones([3,3],np.uint8) #尽量选择int类型和float类型 m1.fill(12222.388) print(m1) 输出结果

    1.7K10

    视觉进阶 | Numpy和OpenCV中的图像几何变换

    在本文中,我将向你介绍一些变换,以及如何在Numpy和OpenCV中执行这些变换。特别是,我将关注二维仿射变换。你需要的是一些基本的线性代数知识。...x’ = Ax 其中A是在齐次坐标系中的2x3矩阵或3x3,x是在齐次坐标系中的(x,y)或(x,y,1)形式的向量。这个公式表示A将任意向量x,映射到另一个向量x’。...和OpenCV中,2D矩阵的原点位于左上角,从x,y=(0,0)开始。...Numpy中的变换 现在对于图片,有几点需要注意。首先,如前所述,我们必须重新调整垂直轴。其次,变换后的点必须投影到图像平面上。...OpenCV中的变换 现在你已经对几何变换有了更好的理解,大多数开发人员和研究人员通常省去了编写所有这些变换的麻烦,而只需依赖优化的库来执行任务。在OpenCV中进行仿射变换非常简单。

    2.3K20
    领券