又是一个好久不见,朋友们你们最近还好吗!最近小仙同学刚经历了人生中的一个重要的里程碑——延毕。在预料之中、又如期而至的两个字,小仙心里也是很复杂,可终究跟“毕业”二字沾了边,就当它是好事啦!
geom_point():用于绘制散点图 参数 color:点的颜色 size:点的大小 shape :点的形状
但是我们的文字版推文还在第一篇文献,前面已经分享了3个:胃癌单细胞数据集GSE163558复现(二):Seurat V5标准流程,接下来是图表美化和单细胞亚群比例探讨:
不管我们做什么组学分析,分析到最后总是躲不过富集分析。富集分析我们可以使用R包" clusterProfiler "进行(具体教程见使用clusterProfiler对非模式生物进行富集分析)。
ggtree是ggplot2的拓展包,可以应用于进化树的绘制,还能对进化树丰富的注释分析。
预后模型在纯生信分析中绝对有一席之地,本文简单的介绍下常见的预后模型构建的思路,详细的代码和使用场景见文中对应的推文链接
话不多说,上网址: https://www.r-graph-gallery.com/ r-garp-gallery收入了大量利用R语言绘制的图形,这些图形包含了很多方面,通过这个网站,我们可以方便直观观察到R语言所能做的一些图形。
为了能更方便的查看,检索,对文章进行了精心的整理(PLUS)。建议收藏,各取所需,当前没用也许以后就用到了呢!
干货预警:3分钟搞定GO/KEGG功能富集分析(2),给大家详细讲解了DAVID网站的使用,通过分步操作,带领大家学习了使用DAVID工具来进行GO和KEGG分析。今天,我们重点讲解如何将DAVID中的功能富集的结果转换成正式的Figure,有请小猎豹。
今天我们来聊一波有趣的数据可视化。 首先,我们先讲一下我们今天要用到的数据。是来自于 http://www.stat.ubc.ca/~rickw/gapminderDataFiveYear.txt 的世界经济数据。 我们打开前6行可以看到以下部分: X head(X) 其中country就是统计的国家啦,year则是统计获得的年份,这份数据采集了1952年到2007年的数据,每五年进行一次统计,pop则是人口的数目,continent代表国家所在的大洲,包括Aisa,Africa,America,Eur
首先,简单介绍一下作者,宁海涛是211硕士毕业,先后学习Python进行深度学习模型构建以及可视化展示,当然还包括数据分析、数据处理、数据可视化等技能,此外,还特别擅长于使用R语言进行数据统计和可视化绘制,当然还有一些前端、爬虫等这里就不做解释,总之是一位比较全能的优质作者。从2020年5月一直到现在,已连载超过「185+优质原创文章」。
对生信分析中得到的一些基因,进行KEGG富集分析,达到对基因进行注释和分类的目的。
做完转录组差异表达或者其他的一些分析拿到一些基因名称之后下一步通常是做一些注释,比如GO或者KEGG的注释,注释好以后通常是富集分析。如果是研究比较多的物种,可以直接使用R语言包clusterProfiler做富集分析当然是最好,最后可以很少的代码拿到很漂亮的结果图。但是如果是比较小众的物种,没办法借助clusterProfiler这个R包的话,如何得到和clusterProfiler一样的可视化结果呢?今天的推文介绍一下相关的R语言ggplot2作图代码
不过,我做不到,我只能做到的是可以绘制出几乎全部的图表的雏形,而且我个人觉得,把ggplot2学习到这个程度就足够了。一张统计图就是从数据到几何对象(点、线、条形等)的图形属性(颜色、形状、大小等)的一个映射。
Highcharter是基于HighCharts javascript库及其模块的R包。这个包的主要功能是:可以创建交互式的各种图表,如散点图、气泡图、时间序列、热图、树形图、条形图等;支持各种R对象;支持Highstocks图表、Choropleths;支持管道方法和各种各样的主题与外观。
Hello小伙伴们大家好,我是生信技能树的小学徒”我才不吃蛋黄“。今天是胃癌单细胞数据集GSE163558复现系列第四期。第三期我们选择0.5分辨率,对细胞进行了分群注释。本期,我们将在第三期基础上使用多种方法可视化细胞和基因。
CellPhoneDB是一个受配体及其相互作用的数据库,整合了UniProt, ensemble, PDB, IMEx,IUPHAR等数据库的信息。CellPhoneDB数据库概况如下图所示
今天我参考github,总结出一个极简但却包括了几乎所有Python的绘图包。 一共22个Python绘图包: Python 绘图包 altair - 基于Vega Lite的声明性统计可视化 bokeh - 用于Python的交互式Web绘图 Chartify - Bokeh包装,使数据科学家更容易创建图表 diagram - 使用UTF-8字符的文本模式图 ggplot - 基于R的绘图系统ggplot2 glumpy - OpenGL科学可视化库 holoviews - 来自注释数据的复杂和声明性
我们在绘制可视化图表时经常需要对特定区域、位置等使用文本或箭头等标识性字符进行注释显示,这种注释在可视化制作中尤为重要,它可以突出重要信息,引起人们对图形某个特征的关注。接下来,小编就汇总一下在R和Python可视化绘制中是如何进行注释的。具体内容如下:
直播回看地址 https://appqtulvsie4217.pc.xiaoe-tech.com/detail/l_5e5dd4cfd2ef3_4Ramdutd/4?fromH5=true#/ 数据可
点击上方蓝色字体,关注程序员zhenguo 你好,我是 zhenguo今天这篇文章不是项目,我的第十个项目还在整理中。今天我参考github,总结出一个极简但却包括了几乎所有Python的绘图包。一共22个Python绘图包: Python 绘图包 altair - 基于Vega Lite的声明性统计可视化 bokeh - 用于Python的交互式Web绘图 Chartify - Bokeh包装,使数据科学家更容易创建图表 diagram - 使用UTF-8字符的文本模式图 ggplot - 基于R的绘图
找R语言做弦图的教程的时候发现了这个包:GOplot。其主要功能是可视化GO富集分析的结果。自己应该会用得到。 第一步是学习其帮助文档中的例子,然后学习如何准备自己的数据,并利用这个包中的函数来绘图
在生物信息领域我们常常使用R语言对数据可视化。在对数据可视化的时候,我们需要明确想要展示的信息,从而选择最为合适的图突出该信息。本系列文章将介绍多种基于不同R包的作图方法,希望能够帮助到各位读者。
没有特别系统的学习 tidy evaluation 这方面的高级操作,最近有空准备补一补,学习下这方面的知识。
上次分享了小提琴曲线(violin plot)的作图方法,今天小仙同学给大家介绍一下如何用R画出漂亮的密度图(density plot)。
作者:Anmol Anmol翻译:王闯(Chuck)校对:赵茹萱本文约2000字,建议阅读5分钟本文主要介绍Python中用来替代Matplotlib和Seaborn的可视化工具plotly,并结合实例讲解了plotly的优点和用法,满足了可视化绘图的交互需求。 是时候升级你的可视化游戏了。 图片源: Unsplash,由Isaac Smith上传 数据可视化是人脑有效理解各种信息的最舒适、最直观的方式。对于需要处理数据的人来说,能够创建漂亮、直观的可视化绘图是一项非常重要的技能,这能够有效地传达数据洞
四种常见的作图系统中,ggplot2包基于一种全面的图形“语法”,提供了一种全新的图形创建方法。这个包极大地扩展了R绘图的范畴,提高了图形的质量。它通过全面一致的语法帮助我们将多变量的数据集进行可视化,并且很容易生成R自带图形难以生成的图形。
首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式。 作图数据格式如下:
程序员的沉没成本论:沉没成本谬论是人类众多的认知偏见之一。它指的是我们倾向于持续将时间和资源投入到失去的原因中,因为我们已经花了很多时间去追求无用的事情。沉没成本谬论适用于当我们花了很多成本也不会起作用的项目或工作。比如,当存在效率更高,互动性更强的选择时,我们依然继续使用Matplotlib。
https://www.bilibili.com/video/BV1B5411W7HU
沉没成本谬论是人类众多的认知偏见之一。 它指的是我们倾向于持续将时间和资源投入到失去的原因中,因为我们已经花了很多时间去追求无用的事情。沉没成本谬论适用于当我们花了很多成本也不会起作用的项目或工作。比如,当存在效率更高,互动性更强的选择时,我们依然继续使用Matplotlib。
之前小编给大家推荐过一个支持 R 语言的交互式图形库 Plotly ,不知道大家有没有试试用它画图呢,如果你觉得 Plotly 提供的代码还是有些冗长,那么可以看看今天这个 R 包—— autoplotly[1],它能帮你一行代码实现可视化。
我们知道一个漂亮而清晰的图像的形成指定缺不了图像中细节的注释。那么今天我们就来总结下在R语言中那些注释函数。
plot函数中,x和y分别表示所绘图形的横坐标和纵坐标;函数中的...为附加的参数。plot函数默认的使用格式如下:
首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式。
最近小仙同学很是烦恼,本以为自己已经掌握了ggplot2作图的语法,用read.csv(),ggplot()+geom_point()/boxplot()/violinplot()…就可以画遍天下图表,结果却发现到真正画图的时候,还是会出现不少的小问题。
最近小仙同学在好几篇文献里看到了这种小提琴图,暂时就肤浅地认为这是作者为了更好地比较对照组与实验组的差别,所以将同一个基因的小提琴图各画了一半,放在一起。为了跟上可视化的潮流,小仙也来尝试画一下这个没查到正经名字的图。
今天小仙给大家分享一下Slope chart(坡度图)的画法,我在paper中看到的图是这样的
即便小仙同学决定学习R语言来提升自己作图的“逼格”的时候,心中还有有些疑虑的(嘿嘿,我这么懒,可不愿意做无用功了?)。仔细想了想,貌似又找到了两个学习的理由。 一是R可以帮助我们避免重复劳动,实现“
柱状图又称条形图,在统计分析中的使用频率最高,也是众多小白入门R最早绘制的可视化图形。
首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式。 作图数据格式如下: (今天偷懒啦,直接借用了iris数据集)
使用guides()参数来设置或移除特定的美学映射(fill, color, size, shape等).
上次 R 可视乎主要讲述了《Geospatial Health Data》[1]一书中关于空间地理数据可视化用 R 包制作地图的基础内容,参见 R可视乎|空间地理数据可视化(1)。本篇将继续介绍空间地理数据可视化的 R 包和函数。
为了画今天的这个图,小仙决定凭空想象一台可以实时监控基因表达水平的设备,成功得到了这么一组数据。
利用R语言也可以制作出漂亮的交互数据可视化,下面和大家分享一些常用的交互可视化的R包。
考虑到公众号后台数不胜数的提问其实并不是生物学知识或者数据处理知识的困惑,仅仅是绘图小技巧以及数据转换的困难。所以我们一再强调系统性掌握编程知识的重要性,在这个打基础方面我让实习生“身先士卒”,起码每个人在每个编程语言上面都需要看至少五本书而且每本书都需要看五遍以上,并且详细的记录笔记。
基于模型拟合的常见绘图注释有模型方程、显着性检验和各种拟合优度指标。哪些注释最有用取决于是将 x 和 y 都映射到连续变量,还是将 y 映射到连续变量,以及将 x 映射到因子。在某些情况下,可能需要添加方差分析表或汇总表作为绘图注释。
可视化的展示方式可以使数据更易读,且容易看出一些数据下隐藏的“结果”,而添加注释则可以进一步聚焦到想重点展示的“信息”。
领取专属 10元无门槛券
手把手带您无忧上云