柱形图 简介 英文:histogram或者column diagram 排列在工作表的列或行中的数据可以绘制到柱形图中。在柱形图中,通常沿水平轴组织类别,而沿垂直轴组织数值。 柱形图具有下列图表子类型
考虑到公众号后台数不胜数的提问其实并不是生物学知识或者数据处理知识的困惑,仅仅是绘图小技巧以及数据转换的困难。所以我们一再强调系统性掌握编程知识的重要性,在这个打基础方面我让实习生“身先士卒”,起码每个人在每个编程语言上面都需要看至少五本书而且每本书都需要看五遍以上,并且详细的记录笔记。
本文主要使用函数coord_polar()用于生成饼图,它只是极坐标中的堆积条形图。
写在最后:有时间我们会努力更新的。大家互动交流可以前去论坛,地址在下面,复制去浏览器即可访问,弥补下公众号没有留言功能的缺憾。
这几张图乍一看和我们之前看到的很不一样,但是仔细一看其所用的基本元素不就是我们的条形图吗?
《第二十二条军规》是美国作家约瑟夫·海勒创作的长篇小说,该小说以第二次世界大战为背景,通过对驻扎在地中海一个名叫皮亚诺扎岛(此岛为作者所虚构)上的美国空军飞行大队所发生的一系列事件的描写,揭示了一个非理性的、无秩序的、梦魇似的荒诞世界。我喜欢整本书中语言的创造性使用和荒谬人物的互动。本文对该小说进行文本挖掘和可视化。
ggplot2 包提供了一套基于图层语法的绘图系统,它弥补了 R 基础绘图系统里的函数缺乏一致性的缺点,将 R 的绘图功能提升到了一个全新的境界。ggplot2 中各种数据可视化的基本原则完全一致,它将数学空间映射到图形元素空间。想象有一张空白的画布,在画布上我们需要定义可视化的数据(data),以及数据变量到图形属性的映射(mapping)。
在基础图中使用RColorBrewer调色板,brewer.pal()函数用于生成颜色矢量。
今天这篇内容会比较杂乱一点,因为会讲到ggplot函数中的一大类通过极坐标支持才能呈现出来的图表效果。 ggplot作图背后的图表哲学,没有给予饼图(以及衍生出的圆环图、玫瑰图等放射状图表类型)存在的空间(主要是该包的开发者个人的审美观,比较反感次坐标轴以及功能类型雷同的重复性图层函数,所以它宁可开发出分面图层原理也不愿意增加次坐标轴,不愿意为原本柱形图可以表达的图表形式再单独开发一种功能雷同的饼图函数)。 但是巧的是,在常见的三种坐标形式中,极坐标转换可以非常轻松的将常见的柱形图(条形图)、堆积柱形图通过
面积图是一种源于折线图但是改变了其展现方式的图形。具体地,它通过一定的区域面积来表示数据大小,利用不同的颜色或者线条来区别不同组的数据。William Playfair,苏格兰工程师和政治经济学家,是图形化统计方法的创始人,是面积图的发明人,除此之外他还发明了折线图、条形图、饼图等。他发表于1786年的著作The Commercial and Political Atlas中使用了面积图:
在进行数据分析时,免不了对结果进行可视化。那么,什么样的图形才最适合自己的数据呢?一个有效的图形应具备以下特点:
ggplot作图系统在R预言诸多可视化包中之所以如此的风靡,除了它拥有自己的图层理念之外,我觉得还要归功于它对于图表细节元素的灵活调整。 对于ggplot的初学者而言,可能没有太多的在意图表的主题是否优雅,配色是否美观,仅求能够准确无误的出图就OK了。 但是如果仅限于此,那么使用ggplot作图真的就是杀鸡用了宰牛刀了。 就拿默认的图表来说,虽然你只靠两句代码就可以跑出来一幅还算及格的图表,可是ggplot语法博大精深,背后给你的代码默认匹配的参数不计其数。 其中有一组特别庞大的参数组就是theme()参数
ggplot是一个拥有一套完备语法且容易上手的绘图系统,在Python和R中都能引入并使用,在数据分析可视化领域拥有极为广泛的应用。本篇从R的角度介绍如何使用ggplot2包,首先给几个我觉得最值得推荐的理由:
桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图。它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。因1898年Matthew Henry Phineas Riall Sankey绘制的“蒸汽机的能源效率图”而闻名,此后便以其名字命名为“桑基图”。
「关于jjAnno」更多详细的内容可点击下方链接https://mp.weixin.qq.com/s/CVXsJPPx12saw0WYiReQag
之前的ggplot2入门实践篇已经更新告一段落,也已经做了归总分类分享给大家。 最近翻看突然发现少了一个知识点,就是分面中没有讲填充多边形分面的应用,虽然其理念跟其他的常用图表类型一致。 但是鉴于多边形填充本身就比较复杂,再加上分面肯定能把大部分小伙伴儿绕晕,这里还是亲自实践一篇案例详细讲解一下实际用法。 如果你还不懂如何使用ggplot2制作数据地图的话,你可以参考以下序列文件: 地图部分(ggplot2) 你想要的地图素材资源,我都帮你整理好了~ 一篇文章教你搞定JSON素材,从此告别SHP时代~ 大道
第一个要介绍的是一个R包,叫做RColorBrewer。该包提供了一系列的色板,包括渐变的颜色和不同颜色的组合搭配(见下图)。
randomcoloR和paletteer的使用方式类似,都提供了直观的函数来生成和应用颜色方案。randomcoloR 包可以生成随机的颜色方案,非常适合当你需要快速创建一个颜色方案时使用。
ggPlantmap包含了一些内置的数据集,描述了不同的植物组织和发育阶段。这些数据集可以直接用于绘图,也可以与用户自己的数据合并。
分别是ggplot2 用来画图RColorBrewer 用来生成颜色dplyr 用来整理数据
文章来源:"Preoperative immune landscape predisposes adverse outcomes in hepatocellular carcinoma patients with liver transplantation" (2021,npj Precision Oncology),数据与代码全部公开在https://github.com/sangho1130/KOR_HCC。
箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因形状如箱子而得名。在各种领域也经常被使用。
旭日图(sunbrust diagram),通常也被称为多层饼图(multi-level pie chart)或径向树图,通常会用来展示层级占比关系,通过一系列的圆环展示层次结构。冰柱图(icicle diagram)也叫分区层图(partition layer chart),也就是直角坐标系下的旭日图,他们都是展示层级占比关系的王者。
第一步:准备数据,使用的数据包括三列,len长度,supp是分类变量,dose是0.5mg,1mg和2mg三个变量。
提到R语言,总会想到它强大的绘图包ggplot2,甚至于其他语言中也有它的痕迹(例如,python中的matplotlib模块就有ggplot样式)。以下,总结了一些日常绘图中常用的命令。
一篇旧文,解决一个困扰已经的小技术问题,权当是学习ggplot2以来的整理回顾与查漏补缺。 ---- 今天这一篇是昨天推送的基础上进行了进一步的深化,主要讲如何在离散颜色填充的地图上进行气泡图图层叠加。 为了使得案例前后一致,仍然使用昨天的数据集。 加载包: library("ggplot2") library("plyr") library("maptools") library("sp") library("ggthemes") 导入中国省界地图: china_map<-readShapePoly("
其实 ggplot2 并没有类似于 geom_pie() 这样的函数实现饼图的绘制,它是由 geom_bar() 柱状图经过 coord_polar() 极坐标弯曲从而得到的。 对于为什么 ggplot2 中没有专门用于饼图绘制的函,有人说:“柱状图的高度,对应于饼图的弧度,饼图并不推荐,因为人类的眼睛比较弧度的能力比不上比较高度(柱状图)。” 关于饼状图被批评为可视化效果差,不推荐在 R 社区中使用的文章在网络也有不少,感兴趣的可以去搜一下。
ggplot2是R语言最流行的第三方扩展包,是RStudio首席科学家Hadley Wickham读博期间的作品。根据其绘图理念,图形由以下几个模块组成:
代码链接 https://mrvollger.github.io/StainedGlass/ https://github.com/mrvollger/StainedGlass
但是学生的表现实在是太超出我意料了,能超脱于现有的工具,达到随心所欲的定制化,值得分享!
本文作者蒋刘一琦,自嘲是一个有艺术追求的生信狗,毕业于浙江大学生物信息学专业,目前在复旦大学就读研究生,研究方向为宏基因组。
函数scale_x_discrete可用于将项目的顺序更改为“2”,“0.5”,“1”:
之前联系过程中遇到的一个小技术问题,就是在ggplot2制作数据地图时,使用标度调整参数进行范围限定时,总是出现错误,版面上出现交错的线条和条带。 应该是自己添加的标度限定参数与ggplot2映射规则
ggplot2是由Hadley Wickham创建的一个十分强大的可视化R包。按照ggplot2的绘图理念,Plot(图)= data(数据集)+ Aesthetics(美学映射)+ Geometry(几何对象)。本文将从ggplot2的八大基本要素逐步介绍这个强大的R可视化包。
金融市场上最重要的任务之一就是分析各种投资的历史收益。要执行此分析,我们需要资产的历史数据。数据提供者很多,有些是免费的,大多数是付费的。在本文中,我们将使用Yahoo金融网站上的数据。
今天这一篇是昨天推送的基础上进行了进一步的深化,主要讲如何在离散颜色填充的地图上进行气泡图图层叠加。 为了使得案例前后一致,仍然使用昨天的数据集。 加载包: library(ggplot2) library(plyr) library(maptools) library(sp) 导入中国省界地图: china_map<-readShapePoly("c:/rstudy/bou2_4p.shp") data1<- china_map@data data2<- data.frame(id=row.n
要执行此分析,我们需要资产的历史数据。数据提供者很多,有些是免费的,大多数是付费的。在本文中,我们将使用Yahoo金融网站上的数据。
今天,随着数据量的不断增加,数据可视化成为将数字变成可用的信息的一个重要方式。R语言提供了一系列的已有函数和可调用的库,通过建立可视化的方式进行数据的呈现。在使用技术的方式实现可视化之前,我们可以先和AI科技评论一起看看如何选择正确的图表类型。 作者 Dikesh Jariwala是一个软件工程师,并且在Tatvic平台上编写了一些很酷很有趣的程序。他用API编写了第一版Price Discovery,AI科技评论对他所写的这篇文章做了编译,未经许可不得转载。 如何选择正确的图表类型 四种可选择的基本
本次内容介绍条形图的绘制,包括基本条形图、簇状条形图、频数条形图、堆积条形图、百分比条形图。
本期开始继续基础图表(柱形图/条形图(bar charts))的绘制推文教程,但在系列绘制之前,我们先介绍下个人较喜欢的一个绘图R包-ggchicklet包,用于绘制带圆角角度的柱形图(Rounded Segmented Column)。主要涉及的知识点如下:
gggenes是ggplot2的扩展包,用于绘制基因结构图、多物种基因比较图的很好玩的工具。
今天向大家介绍一个绘制序列标识图的方法,这样更直观的展示测序数据的情况,让我们的数据更容易分析,gglogo是基于ggplot2绘制的。
为体现组间差异,可能大部分人都会第一个想到箱图(boxplot)来展示;但是当审稿人看到满屏Figure都是箱图的时候,肯定会觉得作者团队数据可视化能力还有待提高,如何给审稿人美好的第一印象,科研数据的可视化非常重要,相同的数据,除了箱图,我们还可以使用小提琴图或者密度分布图来展示结果,而且尽量让一些统计学结果体现在图里。
安装 R 现在最新版的 R 语言是 3.6.2 版本 (2019 年 12 月 12 日发布),该发行版的名字是 Dark and Stormy Night (漆黑暴风夜 ??),事实上只要用 3.0
作图的时候常出现一个问题,我把windows系统字体Times New Roman指定为图形里的字体,虽然在RStudio图形窗口会显示指定字体,但是在保存为PDF时出现问题,出现字体类别错误,指定字体无法显示。
原文链接是 https://benjaminlmoore.wordpress.com/2014/04/06/author-inflation-in-academic-literature/
领取专属 10元无门槛券
手把手带您无忧上云