首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

「R」说说r模型中的截距项

y ~ x y ~ 1 + x 很多读者在使用 R 的模型构建时可能会对其中的截距项感到困惑。上述两个模型都描述了简单的线性回归,是等同(完全一致)的。...第一个模型隐含了截距项,而第二个模型显式地进行了指定。 当我们了解这一点后,我们在实际的操作过程中尽量指明截距项,这样能够更加方便自己和他人理解。...y ~ 0 + x y ~ -1 + x y ~ x - 1 上述3个模型都去除了截距项。 如果是 y ~ 1 那么得到的模型结果恰好是均值。为什么是均值呢?大家不妨想一想。...相关资料: https://cran.r-project.org/doc/manuals/R-intro.html#Statistical-models-in-R https://stackoverflow.com.../questions/13366755/what-does-the-r-formula-y1-mean

3.3K00

HMM模型在量化交易中的应用(R语言版)

函数形式:X(t+1) = f( X(t) ) HMM由来 物理信号是时变的,参数也是时变的,一些物理过程在一段时间内是可以用线性模型来描述的,将这些线性模型在时间上连接,形成了Markov链。...因为无法确定物理过程的持续时间,模型和信号过程的时长无法同步。因此Markov链不是对时变信号最佳、最有效的描述。 针对以上问题,在Markov链的基础上提出了HMM。...HMM在波动率市场中的应用 输入是:ATR(平均真实波幅)、log return 用的是depmixS4包 模型的输出并不让人满意。 HS300测试 去除数据比较少的9支,剩291支股票。...训练数据:上证指数的2007~2009 测试数据:沪深300成份股2010~2015 交易规则:longmode在样本内收益最大对应的隐状态 & shortmode在样本内收益最大对应的隐状(交集)...,然后在每天入选的股票中平均分配资金 (注:0票就相当于平均分配资金在投票>0的股票上) n=5 n=15 50个HMM模型里10-18个投票,结果都挺理想了!

2.9K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何用R语言在机器学习中建立集成模型?

    2.集合的类型 在进一步详细介绍之前,您应该了解的一些基本概念是: 平均:它被定义为 在回归问题的情况下或在预测分类问题的概率时从模型中获取预测的平均值。 ?...多数投票:它被 定义为 在预测分类问题的结果的同时,从多个模型预测中以最大投票/推荐进行预测。 ? 加权平均值:在此,不同的权重应用于来自多个模型的预测,然后取平均值 。 ?...堆叠:在堆叠多层机器时,学习模型彼此叠加,每个模型将其预测传递给上面层中的模型,顶层模型根据模型下面的模型输出做出决策。...这非常耗时,因此可能不是实时应用程序的最佳选择。 4.在R中实施集合的实用指南 #让我们看一下数据集数据的结构 'data.frame':614 obs。...多数表决:在多数表决中,我们将为大多数模型预测的观察指定预测。

    1.8K30

    在Nebula3中加载自定义模型的思路

    之前看了下WOW的地形组织方式, 一直在想怎么把它加进来 模模糊糊地感觉到, 它应该是把Model当成了最基本的渲染单位 地形是不是也需要包装成模型呢?...嗯, 虽说地形也是一种特殊的模型, 但它的管理方式相对来说太过于特殊了, 不知道还能不能跟模型走一条管线. 先看看植被是怎么组织的: ?...那么, 反过就是InternalModelEntity的自定义构造流程: 1. 把顶点数据加载到内存, 利用MemoryVertexBufferLoader创建出VertexBuffer....创建ShapeNode, 利用MemoryMeshLoader加载1中的数据到实例中, 同时设置shader和相应参数(纹理也是shader 参数的一种, 渲染状态是包含在fx中的, 所以也属于shader...知道了这些, 写个自定义模型格式的ModelLoader就很容易了, 嘿嘿 不知道把Terrain Tile当成ModelEntity可不可行, 这样的话连摄像机裁剪都省了-_-.

    1.3K40

    广义估计方程和混合线性模型在R和python中的实现

    广义估计方程和混合线性模型在R和python中的实现欢迎大家关注全网生信学习者系列:WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2介绍针对某个科学问题...(变数、变量、变项)协变量(covariate):在实验的设计中,协变量是一个独立变量(解释变量),不为实验者所操纵,但仍影响响应。...比值几率表示单位预测变量变化时响应变量的几率的乘性变化。在本例中,不适合。...比值几率表示单位预测变量变化时响应变量的几率的乘性变化。在本例中,不适合。...- 实例操作及结果解读(R、Python、SPSS实现)混合线性模型介绍--Wiki广义估计方程中工作相关矩阵的选择及R语言代码在Rstudio 中使用pythonAn Introduction to

    45400

    在vscode中配置R的开发环境

    并且在1.21中完善了windows系统下的extension的bug。...整体看起来效果还是非常不错的,开发者在整体上还是保留了Rstudio和visual studio中对于View()这个函数的配置,还在此基础上添加了search功能,此外对Rshiny可视化的支持也非常棒...▶ pip install radian 四 在R中安装languageserver和jsonlite R LSP client需要借助languageserver实现函数的智能识别,R session...的配置 Path中添加R的执行文件的路径,当然也可以选择radian.exe的路径(该路径存在于python的scripts文件夹中)。...中运行的话,则会出现R session watcher不启用的状况,data和plot的review窗口则会自动调用自身gui所带的review窗口,以在windows中选择radian.exe路径为例

    11.8K20

    虚拟变量在模型中的作用

    虚拟变量是什么 实际场景中,有很多现象不能单纯的进行定量描述,只能用例如“出现”“不出现”这样的形式进行描述,这种情况下就需要引入虚拟变量。...例如即将到来的女生节,每年的这个时候毛绒玩具的销量都会上升,说明女生节对毛绒玩具的销量产生了一定影响,但是这个影响程度又很难界定,这时只能定义一个虚拟变量去描述事情“发生”与“不发生”了。...模型中引入了虚拟变量,虽然模型看似变的略显复杂,但实际上模型变的更具有可描述性。...建模数据不符合假定怎么办 构建回归模型时,如果数据不符合假定,一般我首先考虑的是数据变换,如果无法找到合适的变换方式,则需要构建分段模型,即用虚拟变量表示模型中解释变量的不同区间,但分段点的划分还是要依赖经验的累积...我很少单独使回归模型 回归模型我很少单独使用,一般会配合逻辑回归使用,即常说的两步法建模。例如购物场景中,买与不买可以构建逻辑回归模型,至于买多少则需要构建普通回归模型了。

    4.3K50

    R语言POT超阈值模型在洪水风险频率分析中的应用研究

    案例POT序列在47年的记录期内提供了高于74 m 3 / s 阈值的47个峰值。 我们的目标是将概率模型拟合到这些数据并估算洪水分位数。 我从获取了每次洪水的日期,并将其包含在文件中。...在水文学中,我们通常使用超出概率(洪水大于特定值的概率),因此所需方程式为一个减去所示方程式。 通过将每年超过阈值的洪峰平均数乘以POT概率,我们可以将POT概率转换为每年的预期超标次数。...图3:河流部分序列显示契合度和置信区间 ---- 参考文献 1.R语言基于ARMA-GARCH-VaR模型拟合和预测实证研究 2.R语言时变参数VAR随机模型 3.R语言时变参数VAR随机模型 4.R...语言基于ARMA-GARCH过程的VAR拟合和预测 5.GARCH(1,1),MA以及历史模拟法的VaR比较 6.R语言时变参数VAR随机模型 7.R语言实现向量自动回归VAR模型 8.R语言随机搜索变量选择...SSVS估计贝叶斯向量自回归(BVAR)模型 9.R语言VAR模型的不同类型的脉冲响应分析

    83241

    在tensorflow2.2中使用Keras自定义模型的指标度量

    在训练中获得班级特定的召回、精度和f1至少对两件事有用: 我们可以看到训练是否稳定,每个类的损失在图表中显示的时候没有跳跃太多 我们可以使用一些技巧-早期停止甚至动态改变类权值。...自tensorflow 2.2以来,添加了新的模型方法train_step和test_step,将这些定制度量集成到训练和验证中变得非常容易。...还有一个关联predict_step,我们在这里没有使用它,但它的工作原理是一样的。 我们首先创建一个自定义度量类。...由于tensorflow 2.2,可以透明地修改每个训练步骤中的工作(例如,在一个小批量中进行的训练),而以前必须编写一个在自定义训练循环中调用的无限函数,并且必须注意用tf.功能启用自动签名。...6左右,但是训练本身是稳定的(情节没有太多跳跃)。 最后,让我们看看混淆矩阵,看看类6发生了什么 ? 在混淆矩阵中,真实类在y轴上,预测类在x轴上。

    2.5K10

    【R语言】因子在临床分组中的应用

    前面给大家简单介绍了 ☞【R语言】R中的因子(factor) 今天我们来结合具体的例子给大家讲解一下因子在临床分组中的应用。 我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。...关于这套临床数据的下载可以参考 ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) 前面我们也给大家介绍过一些处理临床数据的小技巧 ☞【R语言】卡方检验和Fisher精确检验,复现临床paper...☞R生成临床信息统计表 ☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 接下来我们先读入临床数据 #读取临床数据 clin=read.table("clinical.tsv...参考资料: ☞【R语言】R中的因子(factor) ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) ☞【R语言】卡方检验和Fisher精确检验,复现临床paper ☞R生成临床信息统计表...☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 ☞肿瘤TNM分期 ☞R替换函数gsub

    3.3K21

    分类-回归树模型(CART)在R语言中的实现

    CART模型 ,即Classification And Regression Trees。它和一般回归分析类似,是用来对变量进行解释和预测的工具,也是数据挖掘中的一种常用算法。...4)决策树可以清晰的显示哪些变量较重要。 下面以一个例子来讲解如何在R语言中建立树模型。为了预测身体的肥胖程度,可以从身体的其它指标得到线索,例如:腰围、臀围、肘宽、膝宽、年龄。...,结果存在fit变量中 fit=rpart(formula,method='avova',data=bodyfat) #直接调用fit可以看到结果 n= 71 node), split, n,...#建立树模型要权衡两方面问题,一个是要拟合得使分组后的变异较小,另一个是要防止过度拟合,而使模型的误差过大,前者的参数是CP,后者的参数是Xerror。...,"CP"]) #模型初步解释:腰围和臀围较大的人,肥胖程度较高,而其中腰围是最主要的因素。

    2.8K60

    分类-回归树模型(CART)在R语言中的实现

    CART模型 ,即Classification And Regression Trees。它和一般回归分析类似,是用来对变量进行解释和预测的工具,也是数据挖掘中的一种常用算法。...4)决策树可以清晰的显示哪些变量较重要。 下面以一个例子来讲解如何在R语言中建立树模型。为了预测身体的肥胖程度,可以从身体的其它指标得到线索,例如:腰围、臀围、肘宽、膝宽、年龄。...,结果存在fit变量中 fit=rpart(formula,method='avova',data=bodyfat) #直接调用fit可以看到结果 n= 71 node), split, n,...#建立树模型要权衡两方面问题,一个是要拟合得使分组后的变异较小,另一个是要防止过度拟合,而使模型的误差过大,前者的参数是CP,后者的参数是Xerror。...,"CP"]) #模型初步解释:腰围和臀围较大的人,肥胖程度较高,而其中腰围是最主要的因素。

    4.1K40

    在Laravel 的 Blade 模版中实现定义变量

    有时候我们需要在 Laravel 的 Blade 模版中定义一些变量,而 Blade 却没有提供这样的方法/ /,所以我们这里为大家分享两种可以实现在 Blade 模版中定义变量的方法。...方法一 由于 Blade 模版中允许使用原生 PHP 代码,所以我们可以使用 PHP 语句来定义变量: <?php $var/ / = 'test'; ?...> {{ $var }} 方法二 除了上面的方法,我们还可以使用 Blade 的注释语法来定义/设置变量。由于在 Blade 中 {{-- 这里是注释 --}} 会被解析为 <?php / / ?...>,所以我们可以使用下面这样的语句来定义变量: {{-- --}} // 这条语句会被 Blade 解析为 <?php / /$i=0;/ / ?...以上这篇在Laravel 的 Blade 模版中实现定义变量就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

    3.6K10

    Percolator模型及其在TiKV中的实现

    为了避免出现此异常,Percolator事务模型在每个事务写入的锁中选取一个作为Primary lock,作为清理操作和事务提交的同步点。...四、在TiKV中的实现及优化 4.1 Percolator在TiKV中的实现 TiKV底层的存储引擎使用的是RocksDB。...这样同一个Key的不同版本在rocksdb中是相邻的,且版本比较大的数据在旧版本数据的前面。 TiKV中对Percolator的实现与论文中稍有差别。...,开销很大; 在采用MVCC并发控制算法的情况下也会出现读等待的情况,当存在读写冲突时,对读性能有较大影响; 总体上Percolator模型的设计还是可圈可点,架构清晰,且实现简单。...Google Percolator 事务模型的利弊分析 3.

    1.3K30

    Percolator模型及其在TiKV中的实现

    为了避免出现此异常,Percolator事务模型在每个事务写入的锁中选取一个作为Primary lock,作为清理操作和事务提交的同步点。...四、在TiKV中的实现及优化 4.1 Percolator在TiKV中的实现 TiKV底层的存储引擎使用的是RocksDB。...这样同一个Key的不同版本在rocksdb中是相邻的,且版本比较大的数据在旧版本数据的前面。 TiKV中对Percolator的实现与论文中稍有差别。...在TiKV的实现中,当提交一个事务时,事务中涉及的Keys会被分成多个batches,每个batch在Prewrite阶段会并行地执行。...,开销很大; 在采用MVCC并发控制算法的情况下也会出现读等待的情况,当存在读写冲突时,对读性能有较大影响; 总体上Percolator模型的设计还是可圈可点,架构清晰,且实现简单。

    1.5K20

    LSTM模型在问答系统中的应用

    在问答系统的应用中,用户输入一个问题,系统需要根据问题去寻找最合适的答案。 1、采用句子相似度的方式。...该算法通过人工抽取一系列的特征,然后将这些特征输入一个回归模型。该算法普适性较强,并且能有效的解决实际中的问题,但是准确率和召回率一般。 3、深度学习算法。...依然是IBM的watson研究人员在2015年发表了一篇用CNN算法解决问答系统中答案选择问题的paper。...但是对于时序的数据,LSTM算法比CNN算法更加适合。LSTM算法综合考虑的问题时序上的特征,通过3个门函数对数据的状态特征进行计算,这里将针对LSTM在问答系统中的应用进行展开说明。...2016年watson系统研究人员发表了“LSTM-BASED DEEP LEARNING MODELS FOR NON-FACTOID ANSWER SELECTION”,该论文详细的阐述了LSTM算法在问答系统的中的应用

    1.9K70
    领券