首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python相关库的安装:pandas,numpy,matplotlib,statsmodels

    -i https://pypi.tuna.tsinghua.edu.cn/simple 该过程不仅安装了 matplotlib ,还安装了依赖的 numpy、python-dateutil、kiwisolver...方法三:镜像安装 三个镜像地址——可选择使用,方法相同: 清华:https://pypi.tuna.tsinghua.edu.cn/simple 阿里云:http://mirrors.aliyun.com...where python 第二种情况: 如果没有显示本机上的python解释器,可以在电脑下端的搜索框中搜python,会显示python解释器,选择一个你要用的解释器版本。...:鼠标右键 复制python.exe地址 得出来,文件地址:""E:\Python\python.exe"" 在cmd命令框输入命令: 以安装statsmodels为例 python解释器地址...这样就配置好了 方法四:在pycharm里面直接下载

    17810

    在Python中使用Matplotlib画多个绘图,so easy!

    标签:Python,Matplotlib Python的Matplotlib库是使用最广泛的数据可视化库之一。...在本文中,我们将演示如何使用Matplotlib库绘制多个绘图。 绘制单个绘图 在展示如何绘制多个绘图之前,先浏览一个演示如何使用Matplotlib绘制单个绘图的示例,以确保掌握基本原理。...在这个例子中,将画一个直线图。 要使用Matplotlib绘图,使用Matplotlib库中的pyplot子模块。...例如,subplot(2,3,1)告诉Python解释器,下一个图应该绘制在包含2行和3列的网格中,并且该图应该出现在网格中的第一个位置(第1行,第1列)。绘图位置的顺序首先从左到右,然后从上到下。...例如,要在网格的第一行和第一列绘图,需要访问索引[0,0]处的AxesSubplot。注意,子绘图的索引编号从0开始。 下面的脚本使用subplot()函数在2行3列中绘制六个折线图。

    7.5K11

    Python使用matplotlib库绘图保存

    在深度学习训练过程中,常常需要根据训练的loss和准确率来决定后续的优化方向,我们会在训练过程中得到每一轮的loss和准确率,由此可以看出一个大概的趋势,但要更直观的看到训练中的变化,以及在何时达到最佳效果...matplotlib就是一个好用且常用的绘图库,如果没有安装的可以用pip安装一下: $ pip install matplotlib 安装好后就可以使用了。...假设我们手头有训练过程中训练集和测试集的准确率数据,就可以用来绘图了,代码如下: # -- coding: utf-8 -- import matplotlib.pyplot as plt train_acc...,表示训练过程中每一轮的准确率,然后使用plt绘图,plot就是绘图函数,参数包含了横坐标、纵坐标、绘制内容(bo表示蓝点,r表示红线,这个可以在Matplotlib 用户指南查看)、标签名(这个标签名就可以被图例使用了...绘制的结果如下图所示: 绘图结果 从图中就可以很直观地感受到在训练70轮左右的时候就到达准确率的最高点了,在78%左右。

    86110

    NumPy和Pandas中的广播

    在正常情况下,NumPy不能很好地处理不同大小的数组。...中的广播 Pandas的操作也与Numpy类似,但是这里我们特别说明3个函数,Apply、Applymap和Aggregate,这三个函数经常用于按用户希望的方式转换变量或整个数据。...对于这些例子, 我们首先导入pandas包,然后加载数据到“df”的变量中,这里使用泰坦尼克的数据集 import pandas as pd df = pd.read_csv(".....但是我们肯定不希望这样,所以需要构造lambda表达式来只在单元格中的值是一个映射键时替换这些值,在本例中是字符串' male '和' female ' df.applymap(lambda x: mapping...总结 在本文中,我们介绍了Numpy的广播机制和Pandas中的一些广播的函数,并使用泰坦尼克的数据集演示了pandas上常用的转换/广播操作。

    1.2K20

    【python绘图】matplotlib基本使用(含实例)

    f(x) = x^2sin\frac{1}{x} 前言 matplotlib是python的绘图库,主要用来绘制二维平面图。上手容易、简单,在python数据分析中有非常重要的作用。...基本上有两种使用 Matplotlib 的方法: 一、依靠 pyplot 自动创建和管理图形和轴,并使用 pyplot 函数进行绘图。...二、显式创建图形和轴,并在它们上调用方法(即“面向对象 (OO) 样式”)。 本文章节“plt绘图类型”和“pyplot绘图”主要使用第一种方法(直接调用函数的方法)来介绍基础的功能。...我个人一把在用jupyter做数据分析时使用函数的方法直接调用;在做python桌面程序的时候用到matplotlib时会使用第二种方法。...as np import math # 在-0.4和0.4之间划分10000个等分。

    1.2K80

    Numpy和pandas的使用技巧

    ndarray,它是一系列同类型数据的集合 1、创建数组,将序列传递给numpy的array()函数即可,从现有的数据创建数组,array(深拷贝),asarray(浅拷贝); 或者使用arange...np.random.randint(10,size=(3,3))创建指定范围(0,10)指定维度的一个整数 给定均值/标准差/维度的正态分布np.random.normal(1.75, 0.1, (2, 3)) 4、索引和查找...中的矩阵合并 列合并/扩展:np.column_stack() 行合并/扩展:np.row_stack() numpy.ravel() 与numpy.flatten() numpy.flatten()返回一份拷贝...Python pandas数据分析中常用方法 https://blog.csdn.net/qq_16234613/article/details/64217337 重置索引 import pandas...Shift选中需要合并的框,Shift+m #在代码块前增加新代码块,按a;在代码块后增加新代码块,按b; #删除代码块,按dd #运行当前代码块,Ctrl+Enter #运行当前代码块并选中下一个代码块

    3.5K30

    matplotlib使用教程(三):Axes中的绘图

    这一系列文章原载于公众号工程师milter,如果文章对大家有帮助,恳请大家动手关注下哈~ ---- 在前面的文章中,我们已经了解到Axes才是我们绘图的主战场。...今天我们就来看看Axes中如何进行绘图。 一:Axes中的各种对象 在本系列的第一篇文章中,我们就了解到,matplotlib有过程式和面向对象式两种使用方法。...官方推荐的最佳实践是使用面向对象的方式。 同样在画图时,matplotlib是把各种元素也按照对象进行组织的。...整个matplotlib中的可见对象如下所示: 这幅图虽然很庞大,不要紧,现在先将精力集中在看的懂的组件上就可以了。...容器中可以有各种各样的Artists,为了便于管理,会为每一类primitive创建一个列表。在上一篇文章中,可以看到Axes中有lines、artists、images等列表。

    94900

    使用 Pandas 在 Python 中绘制数据

    在有关基于 Python 的绘图库的系列文章中,我们将对使用 Pandas 这个非常流行的 Python 数据操作库进行绘图进行概念性的研究。...Pandas 是 Python 中的标准工具,用于对进行数据可扩展的转换,它也已成为从 CSV 和 Excel 格式导入和导出数据的流行方法。 除此之外,它还包含一个非常好的绘图 API。...这非常方便,你已将数据存储在 Pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢? 在本系列中,我们将在每个库中制作相同的多条形柱状图,以便我们可以比较它们的工作方式。...(用于 Linux、Mac 和 Windows 的说明) 确认你运行的是与这些库兼容的 Python 版本 数据可在线获得,并可使用 Pandas 导入: import pandas as pd df...在本系列文章中,我们已经看到了一些令人印象深刻的简单 API,但是 Pandas 一定能夺冠。

    6.9K20

    Python Matplotlib 绘图使用指南 (附代码)

    matplotlib 是一个基于 Python 的 2D 绘图库,其可以在跨平台的在各种硬拷贝格式和交互式环境中绘制出高图形。 一个有趣的现象。...1.内联绘图和 % matplotlib %matplotlib 命令可以在当前的 Notebook 中启用绘图。这个命令提供一个可选参数,指定使用哪个 matplotlib 后端。...绝大多数情况下,Notebook 中都是使用 inline 后台,它可以在 Notebook 中嵌入绘图。另一个选项是 qt 后台,它在侧窗口打中打开 Matplotlib 交互 UI 。...然后,可以对这些变量使用 Getter 和 Setter 方法进行绘图中的更改。此外,这使得我们能够在多个 axes 上做工作,而不是只在一个当前 axes 上。...9.二维数组的等高线图和颜色网格图 热像图(颜色网格图)和等高线图在很多情况下都有助于可视化 2D 数据。 ? 10.图像的调整、修改边缘坐标和标度 最后调整细节,让绘图变得更好看。

    1.8K20

    Python入门之安装numpy和pandas

    最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了。...yum -y install pytz yum -y install python-dateutil 1、 pip方式安装 如果有外网一般推荐使用pip安装,linux下和windows下均可使用pip...pandas sympy nose 但很快就会发现这些源安装超级慢,所以我推荐大家使用豆瓣的源 pip install matplotlib -i http://pypi.douban.com/simple...scipy -i http://pypi.douban.com/simple --trusted-host pypi.douban.com 在window系统中,可以打开多个cmd界面,异步进行安装...2、如果服务器上没有外网使用不了pip,则需要使用源码安装。 推荐大家在豆瓣pypi下载,速度更快  https://pypi.doubanio.com/simple/?

    3.2K70
    领券