在机器学习中,经常要度量两个对象的相似度,例如k-最近邻算法,即通过度量数据的相似度而进行分类。在无监督学习中,K-Means算法是一种聚类算法,它通过欧几里得距离计算指定的数据点与聚类中心的距离。在推荐系统中,也会用到相似度的计算(当然还有其他方面的度量)。
信息大爆炸时代来临,用户在面对大量的信息时无法从中迅速获得对自己真正有用的信息。传统的搜索系统需要用户提供明确需求,从用户提供的需求信息出发,继而给用户展现信息,无法针对不同用户的兴趣爱好提供相应的信息反馈服务。推荐系统相比于搜索系统,不需要提供明确需求,便可以为每个用户实现个性化推荐结果,让每个用户更便捷地获取信息。它是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。
AiTechYun 编辑:xiaoshan k最近邻算法(kNN)是机器学习中最简单的分类方法之一,并且是入门机器学习和分类的好方法。它基本上是通过在训练数据中找到最相似的数据点进行分类,并根据分类做
在推荐系统中,我们经常谈到「相似度度量」这一概念。为什么?因为在推荐系统中,基于内容的过滤算法和协同过滤算法都使用了某种特定的相似度度量来确定两个用户或商品的向量之间的相等程度。所以总的来说,相似度度量不仅仅是向量之间的距离。
近邻推荐之基于用户的协同过滤 以及 近邻推荐之基于物品的协同过滤 讲解的都是关于如何使用协同过滤来生成推荐结果,无论是基于用户的协同过滤还是基于物品的协同过滤,相似度的计算都是必不可少的,那么都有哪些计算相似度的方法呢?
本项目基于chatterbot0.8.7来开发,但不仅于此。让我们先对chatterbot做一个简单的了解。
距离度量(Distance)用于衡量个体在空间上存在的距离,距离越远说明个体间的差异越大。
首先是最简单粗暴的算法。为了对比两个东西的相似度,我们很容易就想到可以看他们之间有多少相似的内容,又有多少不同的内容,再进一步可以想到集合的交并集概念。
许多算法,无论是监督或非监督,都使用距离度量。这些度量,如欧几里得距离或余弦相似度,经常可以在k-NN、UMAP、HDBSCAN等算法中找到。
不管是传统的目标跟踪中的生成模型和判别模型,还是用深度学习来做目标跟踪,本质上都是来求取目标区域与搜索区域的相似度,这就是典型的多输入。
余弦相似度是利用两个向量之间的夹角的余弦值来衡量两个向量之间的相似度,这个值的范围在-1到1之间。
相似性度量在机器学习中起着至关重要的作用。这些度量以数学方式量化对象、数据点或向量之间的相似性。理解向量空间中的相似性概念并采用适当的度量是解决广泛的现实世界问题的基础。本文将介绍几种常用的用来计算两个向量在嵌入空间中的接近程度的相似性度量。
知识点: 准确率(Accuracy),精确率(Precision),召回率(Recall),均方根误差(RMSE)
你不能比较苹果和橙子。或者你可以吗?像 Milvus[3] 这样的向量数据库允许你比较任何你可以向量化的数据。你甚至可以在你的 Jupyter Notebook[4] 中做到这一点。但是 向量相似性搜索[5] 是如何工作的呢?
1. 收集 这一步骤是数据收集阶段,涉及到从不同的来源(如数据库、网站、文档等)收集需要分析的文本数据。这些数据可以是文章、评论、报告等形式。重点是确定数据源,并确保数据的相关性和质量。
改进的推荐算法在评级数据“稀疏”的情况下尤其有效。 亚马逊和Netflix等网站的推荐系统使用了一种名为“协同过滤”的技术。为了确定一个给定的客户可能喜欢什么产品,他们寻找更多的客户,他们已经为类似
NO.58 协同过滤模型(上) Mr. 王:为了能够有效地利用其他用户的评价来进行更有效的推荐,人们提出了协同过滤的推荐模型。 小可:那什么是协同过滤模型呢?它又有哪些优势呢? Mr. 王:先说说协同过滤的思想。既然认为他人对一个项目的评价是有一定价值的,我们就要尝试去利用他人对一个项目的评分来考察该项目的好坏。但是这里存在一个问题,就是他人认为不好的项目不一定是我们认为不好的,或者说他人的评价标准不一定符合我们的评价标准。我们要去考虑,如何能够让那些和某个用户评价标准相似的人来评价该用户没有评价过的东西。
距离度量在CV 、NLP以及数据分析等领域都有众多的应用。最常见的距离度量有欧式距离和余弦距离,本文将会分享九种距离,分析其优缺点以及相应的应用常见,如果对你有所帮助,在看完之后,可以分享给你朋友圈的好兄弟,好姐妹们,共同成长进步!
模糊匹配是日常工作中经常遇到的问题。比如我们手上有一份多家上市公司的利润表(每行为一家公司)和一份这些公司的现金流量表(同样一行一家公司),但由于种种原因(比如利润表的公司名称是简称,而现金流量表的公司名称是全称)导致同一家公司在两份表中有不同的名称。只有当这两张表的公司名称一致时,我们才能合并这两份表,同时看到这些公司的总体情况。
在欧几里得空间中定义了距离和向量长度(范数)之后,就可以继续定义角度,以平面几何空间为例,如图1-5-9所示,设
向量和标量最大的区别在于,向量除了拥有数值的大小,还拥有方向。向量或者矢量中的“向”和“矢”这两个字,都表明它们是有方向的。
当电商网站发布一款新产品的时候,怎样找到一群最有可能购买该新品的用户进行营销是一种提高产品销量的重要手段。当然全网营销手段肯定能覆盖所有用户,但这样做一方面浪费资源,增加营销成本;另一方面用户收到过多不感兴趣的信息,会让用户反感,降低用户的体验度。 电商数字化营销成为了营销过程中必不可少的手段。为了筛选出最有可能转化的用户,京东DNN实验室结合大数据进行了相关研究。本文以新品手机为例,使用商品相似度和基于分类的手段进行用户群筛选。 余弦相似度的筛选方式 在实际应用中,我们为了找出相似的文章或者相似新闻,需要
摘要:为了筛选出最有可能转化的用户,京东DNN实验室结合大数据进行了相关研究。本文以新品手机为例,使用商品相似度和基于分类的手段进行用户群筛选,详解了基于余弦相似度的相似度模型构建和基于SVM的分类预测方法。 当电商网站发布一款新产品的时候,怎样找到一群最有可能购买该新品的用户进行营销是一种提高产品销量的重要手段。当然全网营销手段肯定能覆盖所有用户,但这样做一方面浪费资源,增加营销成本;另一方面用户收到过多不感兴趣的信息,会让用户反感,降低用户的体验度。 电商数字化营销成为了营销过程中必不可少的手段。为了筛
本来呢,pearson,kendall以及spearman这3个相关性公式就让人头疼了,但是最近我在教程:比较不同的肿瘤somatic突变的signature 发现两个不同算法的signature的相似性并不是和文章完全一致,原因是作者使用了一个cosine similarity(余弦相似度)的概念。
在数据分析和挖掘领域,我们经常需要知道个体间差异大小,从而计算个体相似性。如今互联网内容爆发时代,针对海量文本的相似识别拥有极大需求。本文将通过识别两段文本是否相似,来看看常见的相似算法,及线上落地方案。
推荐系统(Recommendation System, RS),简单来说就是根据用户的日常行为,自动预测用户的喜好,为用户提供更多完善的服务。举个简单的例子,在京东商城,我们浏览一本书之后,系统会为我们推荐购买了这本书的其他用户购买的其他的书:
衡量两条向量之间的距离,可以将某一张图片通过特征提取来转换为一个特征向量。衡量两张图片的相似度就可以通过衡量这两张图片对应的两个特征向量之间的距离来判断了。
本次实验使用的是VOC2012数据集,首先从图像中随机采样图像块,然后利用Hog方法提取图像块特征,最后采用余弦相似度和k-means聚类两种方法来挖掘视觉模式。
欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。
一、推荐系统的概念 推荐系统(Recommendation System, RS),简单来说就是根据用户的日常行为,自动预测用户的喜好,为用户提供更多完善的服务。举个简单的例子,在京东商城,我
针对海量的新闻资讯数据,如何快速的根据用户的检索需要,完成符合用户阅读需求的新闻资讯推荐?本篇文章主要采用余弦相似度及基于用户协同过滤算法实现新闻推荐,通过余弦相似度算法完成针对不同新闻数据之间的相似性计算,实现分类标签。通过协同过滤算法发现具备相似阅读习惯的用户,展开个性化推荐。
提到检索的方法,比如KNN算法,这些都需要用到“距离”这个尺度去度量两者的近似程度。但是,距离也有很多种,除了我们熟悉的欧氏距离之外,其实还有很多。。。 余弦距离: 是一种衡量两个向量相关程度的尺度。
jvm-sandbox-repeater 是阿里开源的一款可基于 jvm-sandbox (阿里另一开源项目)可对应用目标 jvm 进行动态增强同时对目标服务的指定流量进行录制及回放的工具,使用过程中遇到如下问题:
三角函数,相信大家在初高中都已经学过,而这里所说的余弦相似度(Cosine Distance)的计算公式和高中学到过的公式差不多。
在本文中,数据科学家 Maarten Grootendorst 向我们介绍了 9 种距离度量方法,其中包括欧氏距离、余弦相似度等。
循环神经网络(三) ——词嵌入学习与余弦相似度 (原创内容,转载请注明来源,谢谢) 一、词汇表征 1、one-hot表示法 之前的学习中提到过,对于词汇库,可以用one-hot表示法来表示。即,假设词汇库单词量是10000个单词,则可以用1*10000的矩阵来表示每个单词,单词在对应词汇表中的位置是1,其他位置是0。 如man是第5391个单词,则矩阵为[0 0 0 ... 0 0 1 0 0 ... 0]T,这里的1就是在矩阵的第5391个位置。 这样做有个缺点,即词语之间无法建立任何联系,只有自身的位置
文档相似度判断方法有很多种,比如说余弦相似度,ngram和著名的tf-idf方法去计算文本相似度。
本文是推荐算法理论系列的第一篇文章, 还是想从最经典的协同过滤算法开始。虽然有伙伴可能觉得这个离我们比较久远,并且现在工业界也很少直接用到原始的协同过滤, 但协同过滤的思想依然是非常强大,因为它借助于群体智能智慧,仅仅基于用户与物品的历史交互行为,就可以发掘物品某种层次上的相似关系或用户自身的偏好。这个过程中,可以不需要太多特定领域的知识,可以不需要物品画像或用户画像本身的特征,可以采用简单的工程实现,就能非常方便的应用到产品中。所以作为推荐算法"鼻祖",我们还是非常有必要先来了解一下这个算法的。
大部分程序员由于理工科的背景,有一些高数、线性代数、概率论与数理统计的数学基础。所以当机器学习的热潮来临的时候,都跃跃欲试,对机器学习的算法以及背后的数学思想有比较强烈的探索欲望。
这个系列打算以文本相似度为切入点,逐步介绍一些文本分析的干货,包括分词、词频、词频向量、文本匹配等等。 上一期,我们介绍了文本相似度的概念,通过计算两段文本的相似度,我们可以: 对垃圾文本(比如小广告)进行批量屏蔽; 对大量重复信息(比如新闻)进行删减; 对感兴趣的相似文章进行推荐,等等。 那么如何计算两段文本之间的相似程度?上一篇我们简单介绍了夹角余弦这个算法,其思想是: 将两段文本变成两个可爱的小向量; 计算这两个向量的夹角余弦cos(θ): 夹角余弦为1,也即夹角为0°,两个小向量无缝合体,则相似度
搜索即找到跟搜索词句很相似的文本,例如在百度中搜索"人的名",结果如下 那么怎么评价两个文本之间的相似度呢? 余弦相似度 (cosine similiarity) 本文介绍基于VSM (Vector
余弦相似度衡量的是维度间取值方向的一致性,注重维度之间的差异,不注重数值上的差异,而欧氏度量的正是数值上的差异性。
这个系列打算以文本相似度为切入点,逐步介绍一些文本分析的干货,包括分词、词频、词频向量、TF-IDF、文本匹配等等。 第一篇中,介绍了文本相似度是干什么的; 第二篇,介绍了如何量化两个文本,如何计算余弦相似度,穿插介绍了分词、词频、向量夹角余弦的概念。 其中具体如何计算,在这里复习: 文本分析 | 余弦相似度思想 文本分析 | 词频与余弦相似度 文本分析 | TF-IDF ---- 度量两个文本的相似度,或者距离,可以有很多方法,余弦夹角只是一种。本文简单列了一下常用的距离。 需要注意的是,本文中列的方法,
本文博主给大家讲解如何在自己开源的电商项目newbee-mall-pro中应用协同过滤算法来达到给用户更好的购物体验效果。
最近好久没有写文章了,上一篇文章还是九月十一的时候写的,距今已经两个月了,期间一直在忙一些工作上的事情,今天终于有点空闲,所以写一篇文章散散心。
BERT和RoBERTa在文本语义相似度等句子对的回归任务上,已经达到了SOTA的结果。但是,它们都需要把两个句子同时喂到网络中,这样会导致巨大的计算开销:从10000个句子中找出最相似的句子对,大概需要5000万(C100002=49,995,000)个推理计算,在V100GPU上耗时约65个小时。这种结构使得BERT不适合语义相似度搜索,同样也不适合无监督任务(例如:聚类)。
项目流程 明确定义问题 考虑非机器学习的方法 进行系统设计 选择算法 确定特征,训练数据和日志 执行前处理 学习与参数调整 系统实现 项目基础 微积分 矩阵计算 概率计算 项目算法 分类:利用正确解答的离散类别与输入数据的组合进行学习,从未知数据预测类别 回归:利用正确的数值和输入数据的组合进行学习,从未知数据预测连续值 聚类:以某种基准对数据进行分组 降维:将高维数据映射为低维数据以便可视化或减少计算量。 分类算法(离散值) 二元分类(二值分类) 感知机 逻辑回归 svm(支持向量机) 神经网络
二值分类器是机器学习中最常见的分类器。评价的指标也有很多,precision,recall,F1 score等等。ROC曲线也是之一。 ROC,Receiver Operating Characteristic Curve,受试者工作特征曲线。 ROC曲线的横坐标为假阳性率(False Positive Rate,FPR),纵坐标为真阳性率(True Positive Rate,TPR)。
领取专属 10元无门槛券
手把手带您无忧上云