首页
学习
活动
专区
圈层
工具
发布

在Ubuntu中实现python按tab

---- 1.问题引出:默认情况下python交互界面的tab键         在linux下,或在路由器、交换机上,按tab键按得很爽,什么不完整的,tab一下都出来了,无奈,在linux中安装的python...,默认情况是没有tab功能的,也就是在python的交互界面中,tab是没有办法补全的,python的交互界面只是把它当作正常的多个空格补全来处理: xpleaf@py:~/seminar6/day1$...=====>按tab键,想看看sys的子模块,结果就是按出了一大堆空格键 是啊,这也太恶心了!没有tab键,宝宝不开心!...不过当时确实找了好多,都找不到一个在我自己的实验环境中可以使用的,总是提示各种错误!还好,总算让我找到一个可以使用的,下面直接给出tab.py的代码: #!.../usr/bin/env python # python startup file  import sys import readline import rlcompleter import atexit

2.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用 Pandas 在 Python 中绘制数据

    在有关基于 Python 的绘图库的系列文章中,我们将对使用 Pandas 这个非常流行的 Python 数据操作库进行绘图进行概念性的研究。...Pandas 是 Python 中的标准工具,用于对进行数据可扩展的转换,它也已成为从 CSV 和 Excel 格式导入和导出数据的流行方法。 除此之外,它还包含一个非常好的绘图 API。...这非常方便,你已将数据存储在 Pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢? 在本系列中,我们将在每个库中制作相同的多条形柱状图,以便我们可以比较它们的工作方式。...在本系列文章中,我们已经看到了一些令人印象深刻的简单 API,但是 Pandas 一定能夺冠。...) 只有四行,这绝对是我们在本系列中创建的最棒的多条形柱状图。

    10.8K20

    pandas基础:在pandas中对数值四舍五入

    标签:pandas,Python 在本文中,将介绍如何在pandas中将数值向上、向下舍入到最接近的数字。...将数值舍入到N位小数 只需将整数值传递到round()方法中,即可将数值舍入到所需的小数。...例如,要四舍五入到2位小数: 在pandas中将数值向上舍入 要对数值进行向上舍入,需要利用numpy.ceil()方法,该方法返回输入的上限(即向上舍入的数字)。...以下两种方法返回相同的结果: 在上面的代码中,注意df.apply()接受函数作为其输入。 向下舍入数值 当然,还有一个numpy.floor()方法返回输入的底数(即向下舍入的数字)。...用不同的条件对数据框架进行取整 round()方法中的decimals参数可以是整数值,也可以是字典。这使得同时对多个列进行取整变得容易。

    12.3K20

    5个例子学会Pandas中的字符串过滤

    为了从文本数据中提取有用和信息,通常需要执行几个预处理和过滤步骤。 Pandas 库有许多可以轻松简单地处理文本数据函数和方法。...在本文中,我介绍将学习 5 种可用于过滤文本数据(即字符串)的不同方法: 是否包含一系列字符 求字符串的长度 判断以特定的字符序列开始或结束 判断字符为数字或字母数字 查找特定字符序列的出现次数 首先我们导入库和数据...我们将使用不同的方法来处理 DataFrame 中的行。第一个过滤操作是检查字符串是否包含特定的单词或字符序列,使用 contains 方法查找描述字段包含“used car”的行。...但是要获得pandas中的字符串需要通过 Pandas 的 str 访问器,代码如下: df[df["description"].str.contains("used car")] 但是为了在这个DataFrame...例如,在价格列中,有一些非数字字符,如 $ 和 k。我们可以使用 isnumeric 函数过滤掉。

    2.7K20

    Pandas库在Anaconda中的安装方法

    本文介绍在Anaconda环境中,安装Python语言pandas模块的方法。 pandas模块是一个流行的开源数据分析和数据处理库,专门用于处理和分析结构化数据。...数据读写方面,pandas模块支持从各种数据源读取数据,包括CSV、Excel、SQL数据库、JSON、HTML网页等;其还可以将数据写入这些不同的格式中,方便数据的导入和导出。   ...时间序列分析方面,pandas模块在处理时间序列数据方面也非常强大。其提供了日期和时间的处理功能,可以对时间序列数据进行重采样、滚动窗口计算、时序数据对齐等操作。   ...在之前的文章中,我们也多次介绍了Python语言pandas库的使用;而这篇文章,就介绍一下在Anaconda环境下,配置这一库的方法。   ...在这里,由于我是希望在一个名称为py38的Python虚拟环境中配置pandas库,因此首先通过如下的代码进入这一环境;关于虚拟环境的创建与进入,大家可以参考文章Anaconda创建、使用、删除Python

    2.3K10

    布隆过滤器在PostgreSQL中的应用

    作为学院派的数据库,postgresql在底层的架构设计上就考虑了很多算法层面的优化。其中在postgresql9.6版本中推出bloom索引也是十足的黑科技。...Bloom索引来源于1970年由布隆提出的布隆过滤器算法,布隆过滤器用于检索一个元素是否在一个集合中,它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。...我们一般就把这个二进制位图叫做布隆过滤器,位图长度为m位,每位的值为0或1,它的实现是通过对输入进行哈希,得到的哈希值对位图长度m进行取余,落在位图的哪个地址就将该位置对应的bit位置为1,然后对给定输入按同样...布隆过滤器相比其他数据结构,在空间和时间复杂度上都有巨大优势,在插入和查询的时候都只需要进行k次哈希匹配,因此时间复杂度是常数O(K),但是算法这东西有利有弊,鱼和熊掌不可兼得,劣势就是无法做到精确。...在pg中,对每个索引行建立了单独的过滤器,也可以叫做签名,索引中的每个字段构成了每行的元素集。较长的签名长度对应了较低的误判率和较大的空间占用,选择合适的签名长度来在误判率和空间占用之间进行平衡。

    3.2K30

    协同过滤技术在推荐系统中的应用

    以下是协同过滤技术在推荐系统中的详细应用介绍。协同过滤技术概述协同过滤技术的基本思想是通过分析用户的历史行为数据(如评分、购买记录、浏览记录等),找到相似用户或相似项目,从而进行推荐。...Surprise库): from surprise import KNNBasic from surprise import Dataset from surprise import Readerimport pandas...协同过滤在实际应用中的优化为了克服协同过滤的缺点,在实际应用中可以采取以下优化措施:结合多种算法:混合推荐系统:协同过滤与基于内容的推荐可以结合使用,形成混合推荐系统。...协同过滤技术作为推荐系统中的核心算法之一,具有广泛的应用和重要的价值。通过分析用户的历史行为数据,协同过滤技术能够有效地捕捉用户的兴趣偏好,提供个性化的推荐服务。...在实际应用中,结合多种算法和优化措施,可以进一步提升推荐系统的性能和用户体验。随着数据和技术的不断发展,协同过滤技术将继续在推荐系统中发挥重要作用,推动个性化推荐服务的不断创新和进步。

    91920

    在pandas中利用hdf5高效存储数据

    在Python中操纵HDF5文件的方式主要有两种,一是利用pandas中内建的一系列HDF5文件操作相关的方法来将pandas中的数据结构保存在HDF5文件中,二是利用h5py模块来完成从Python原生数据结构向...本文就将针对pandas中读写HDF5文件的方法进行介绍。...图1 2 利用pandas操纵HDF5文件 2.1 写出文件 pandas中的HDFStore()用于生成管理HDF5文件IO操作的对象,其主要参数如下: ❝「path」:字符型输入,用于指定h5文件的名称...print(store.keys()) 图7 2.2 读入文件 在pandas中读入HDF5文件的方式主要有两种,一是通过上一节中类似的方式创建与本地h5文件连接的IO对象,接着使用键索引或者store...,HDF5比常规的csv快了将近50倍,而且两者存储后的文件大小也存在很大差异: 图12 csv比HDF5多占用将近一倍的空间,这还是在我们没有开启HDF5压缩的情况下,接下来我们关闭所有IO连接,运行下面的代码来比较对上述两个文件中数据还原到数据框上两者用时差异

    3.8K30

    Pandas在Python面试中的应用与实战演练

    本篇博客将深入浅出地探讨Python面试中与Pandas相关的常见问题、易错点,以及如何避免这些问题,同时附上代码示例以供参考。一、常见面试问题1....数据查询与过滤面试官可能询问如何根据条件筛选、查询数据。...'key', how='outer')# 连接数据concatenated_df = pd.concat([df1, df2], ignore_index=True)二、易错点及避免策略忽视数据类型:在进行数据操作前...忽视内存管理:在处理大型数据集时,注意使用.head()、.sample()等方法查看部分数据,避免一次性加载全部数据导致内存溢出。...结语精通Pandas是成为优秀Python数据分析师的关键。深入理解上述常见问题、易错点及应对策略,结合实际代码示例,您将在面试中展现出扎实的Pandas基础和高效的数据处理能力。

    1.5K00

    在pandas中利用hdf5高效存储数据

    在Python中操纵HDF5文件的方式主要有两种,一是利用pandas中内建的一系列HDF5文件操作相关的方法来将pandas中的数据结构保存在HDF5文件中,二是利用h5py模块来完成从Python原生数据结构向...本文就将针对pandas中读写HDF5文件的方法进行介绍。 ?...图1 2 利用pandas操纵HDF5文件 2.1 写出文件 pandas中的HDFStore()用于生成管理HDF5文件IO操作的对象,其主要参数如下: ❝「path」:字符型输入,用于指定h5文件的名称...图7 2.2 读入文件 在pandas中读入HDF5文件的方式主要有两种,一是通过上一节中类似的方式创建与本地h5文件连接的IO对象,接着使用键索引或者store对象的get()方法传入要提取数据的key...图12 csv比HDF5多占用将近一倍的空间,这还是在我们没有开启HDF5压缩的情况下,接下来我们关闭所有IO连接,运行下面的代码来比较对上述两个文件中数据还原到数据框上两者用时差异: import pandas

    6.3K20

    在hbase shell中过滤器的简单使用 转

    在hbase shell中查询数据,可以在hbase shell中直接使用过滤器: # hbase shell > scan 'testByCrq', FILTER=>"ValueFilter(=,'...因在hbase shell中一些操作比较麻烦(比如删除字符需先按住ctrl在点击退格键),且退出后,查询的历史纪录不可考,故如下方式是比较方便的一种: # echo "scan 'testByCrq',...以下介绍在hbase shell中常用的过滤器: > scan 'testByCrq', FILTER=>"RowFilter(=,'substring:111')" 1 如上命令所示,查询的是表名为testByCrq...,过滤方式是通过rowkey过滤,匹配出rowkey含111的数据。...> scan 'testByCrq', FILTER=>"PrefixFilter('00000')" 1 如上命令所示,查询的是表名为testByCrq,过滤方式是通过前缀过滤过滤的是行键,匹配出前缀为

    3.4K20
    领券