首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark 在Yarn上运行Spark应用程序

ApplicationMasters 消除了对活跃客户端的依赖:启动应用程序的进程可以终止,并且从在集群上由 YARN 管理的进程继续协作运行。...1.1 Cluster部署模式 在 Cluster 模式下,Spark Driver 在集群主机上的 ApplicationMaster 上运行,它负责向 YARN 申请资源,并监督作业的运行状况。...当用户提交了作业之后,就可以关掉 Client,作业会继续在 YARN 上运行。 ? Cluster 模式不太适合使用 Spark 进行交互式操作。...需要用户输入的 Spark 应用程序(如spark-shell和pyspark)需要 Spark Driver 在启动 Spark 应用程序的 Client 进程内运行。...在YARN上运行Spark Shell应用程序 要在 YARN 上运行 spark-shell 或 pyspark 客户端,请在启动应用程序时使用 --master yarn --deploy-mode

1.8K10

Eclipse中运行Tomcat遇到的内存溢出错误

使用Eclipse(版本Indigo 3.7)调试Java项目的时候,遇到了下面的错误: Exception in thread “main” Java.lang.OutOfMemoryError: PermGen...java.lang.ClassLoader.defineClass1(Native Method) at java.lang.ClassLoader.defineClassCond(Unknown Source) 很明显是内存溢出的错误,在Eclipse...了解到该原因是因为默认分配给JVM的内存为4M,而Eclipse中有BUG导致eclipse.ini中的参数无法传递给Tomcat,这样在项目加载内容较多时,很容易造成内存溢出。...有一点需要注意,因为使用的是Eclipse中集成的Tomcat,因此要在下面的界面中设置。 ? ?...中通过Tomcat运行JavaWeb项目发生内存溢出:java.lang.OutOfMemoryError: PermGen space 错误的解决方案 2、Download Eclipse 3、Java

1.4K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark学习之在集群上运行Spark(6)

    Spark学习之在集群上运行Spark(6) 1. Spark的一个优点在于可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力。 2....Spark在分布式环境中的架构: [图片] Spark集群采用的是主/从结构,驱动器(Driver)节点和所有执行器(executor)节点一起被称为一个Spark应用(application)。...执行器节点 Spark的执行器节点是一种工作进程,负责在Spark作业中运行任务,任务间相互独立。...两大作用:第一,它们负责运行组成Spark应用的任务,并将结果返回给驱动器进程;第二,它们通过自身的块管理器(Block Manager)为用户程序中要求的缓存的RDD提供内存式存储。 6....集群管理器 Spark依赖于集群管理器来启动执行器节点,在某特殊情况下,也依赖集群管理器来启动驱动器节点。 7.

    633100

    让Spark运行在YARN上(Spark on YARN)

    经过上述的部署,Spark可以很方便地访问HDFS上的文件,而且Spark程序在计算时,也会让计算尽可能地在数据所在的节点上进行,节省移动数据导致的网络IO开销。...Spark程序由Master还是YARN来调度执行,是由Spark程序在提交时决定的。以计算圆周率Pi的示例程序为例,Spark程序的提交方式是: $ ....YARN会先在集群的某个节点上为Spark程序启动一个称作Master的进程,然后Driver程序会运行在这个Master进程内部,由这个Master进程来启动Driver程序,客户端完成提交的步骤后就可以退出...,不需要等待Spark程序运行结束。...Spark程序在运行时,大部分计算负载由集群提供,但Driver程序本身也会有一些计算负载。在yarn-cluster模式下,Driver进程在集群中的某个节点上运行,基本不占用本地资源。

    4.2K40
    领券