首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

自然语言处理中的预训练模型(上)

最近的研究表明,基于大规模未标注语料库的「预训练模型」( PTM)在很多 NLP 任务上取得了很好的表现。...预训练的优点可以总结为以下三点: 在大规模语料库上的预训练可以学习到通用语言表示,对下游任务很有帮助 预训练提供了更好的模型初始化,使得在目标任务上有更好的泛化性能和更快的收敛速度 预训练可以看做一种避免在小数据集上过拟合的正则化方法...3 PTM 概述 不同 PTM 间的区别主要体现在「上下文编码器」的使用以及「预训练的任务和目标」上。...我们已经在 2.2 节中简单介绍了上下文编码器的不同结构,本章我们将专注于预训练任务,并给出一种 PTM 的分类方法。 3.1 预训练任务 预训练任务对于学习语言的通用表示至关重要。...3.1.3 排列语言模型(PLM) 针对 MLM 任务在预训练过程中引入的 mask 等特殊标记可能会导致与下游任务不匹配的问题,「XLNet」 提出排列了「排列语言模型」(PLM)。

1.8K20

使用预训练模型,在Jetson NANO上预测公交车到站时间

您可以在 GitHub 上 的jetson-inference 存储库中访问各种库和经过训练的模型。 实时流协议 (RTSP) 将来自相机视频流的细节连接到 Jetson Nano。...然后,使用imagenet进行分类和 GitHub 存储库中的预训练模型之一,Edgar 能够立即获得流的基本分类。...使用预训练模型,Edgar 使用他的设置在每次检测到公共汽车时从视频流中截取屏幕截图。他的第一个模型准备好了大约 100 张照片。  但是,正如埃德加承认的那样,“说事情一开始就完美是错误的。” ...当他第一次分享这个项目的结果时,他的模型已经接受了 1300 多张图片的训练,它可以检测到站和出发的公共汽车——即使是在不同的天气条件下。他还能够区分定时巴士和随机到达的巴士。...这有助于未来的模型再训练和发现误报检测。  此外,为了克服在本地存储 CSV 文件数据的限制,Edgar 选择使用Google IoT服务将数据存储在BigQuery中。

63920
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【源头活水】Graph上的预训练模型

    01 在图上做预训练模型同传统的transformer有什么区别 在进行对论文的梳理之前,应当先思索一个问题:在图上做预训练模型,和常见的基于自然语言文本去做,二者之间有什么区别呢?...这里面其实有很大的区别,我所想到的有: 1.1 处理的对象(输入)在结构形态上不同 对于NLP中的一个Seqence,当我们限定了它的最大长度之后,便可以使用一个矩阵将该seqence的全部信息进行表达...所以一些pretrian模型不约而同地依据图上需要把握的信息的特点设定了适应于图上的预训练任务中。 1.3 最后一个问题:在图上做预训练模型,主要改进点在哪里?...依照目前的论文来看,主要包括两部分: 1. 模型架构上。也就是说,使用一种固定的预训练GNN结构去处理一类的图。这一部分的工作比较符合NLP里对transformer的改进。 2. 训练任务上。...比如说,在上图左示例的样子,当只使用节点层面的预训练方法的时候,在图空间上的表示就不是很好;而在仅仅使用图层面的预训练任务时,节点层面的表示也不会很好。最好的方法是,同时进行两个层面的训练。

    67520

    ResNet 高精度预训练模型在 MMDetection 中的最佳实践

    上训练出的预训练模型)。...3 高性能预训练模型 在目标检测任务上的表现 本节探讨高性能预训练模型在目标检测任务上的表现。本实验主要使用 COCO 2017 数据集在 Faster R-CNN FPN 1x 上进行。...3.3 mmcls rsb 预训练模型参数调优实验 通过修改配置文件中预训练模型,我们可以将 ResNet 的预训练模型替换为 MMClassification 通过 rsb 训练出的预训练模型。...在此基础上,我们通过 AdamW 来训练 Faster R-CNN ,从而获得 TIMM 预训练模型在检测任务上的效果。...4 总结 通过之前的实验,我们可以看出使用高精度的预训练模型可以极大地提高目标检测的效果,所有预训练模型最高的结果与相应的参数设置如下表所示: 从表格中可以看出,使用任意高性能预训练模型都可以让目标检测任务的性能提高

    3.1K50

    浏览器中的机器学习:使用预训练模型

    在上一篇文章《浏览器中的手写数字识别》中,讲到在浏览器中训练出一个卷积神经网络模型,用来识别手写数字。值得注意的是,这个训练过程是在浏览器中完成的,使用的是客户端的资源。...这个问题其实和TensorFlow Lite类似,我们可以在服务器端训练,在手机上使用训练出的模型进行推导,通常推导并不需要那么强大的计算能力。...在本文,我们将探索如何在TensorFlow.js中加载预训练的机器学习模型,完成图片分类任务。...这个示例写的比较简单,从浏览器控制台输出log,显示结果,在chrome浏览器中可以打开开发者工具查看: 加载json格式的MobileNets模型 使用封装好的JS对象确实方便,但使用自己训练的模型时...在下一篇文章中我将说明如何从现有的TensorFlow模型转换为TensorFlow.js模型,并加载之,敬请关注! 以上示例有完整的代码,点击阅读原文,跳转到我在github上建的示例代码。

    1.2K20

    语义信息检索中的预训练模型

    由于待训练的模型参数很多(增加model capacity),而专门针对检索任务的有标注数据集较难获取,所以要使用预训练模型。 2....代表性的模型是BM25,用来衡量一个term在doc中的重要程度,其公式如下: 惩罚长文本、对词频做饱和化处理 实际上,BM25是检索模型的强baseline。...预训练模型在倒排索引中的应用 基于倒排索引的召回方法仍是在第一步召回中必不可少的,因为在第一步召回的时候我们面对的是海量的文档库,基于exact-match召回速度很快。...所以,可以使用contextualized模型,例如BERT,Elmo等获得每个词的 上下文 表示,然后通过简单的线性回归模型得到每个词在document中的重要程度。...对,对于一个document,先得到其门控向量G, 然后去和实际的query进行对比: T为真实query的bag of words 下一篇将介绍预训练模型在深度召回和精排中的应用

    1.8K10

    请谨慎使用预训练的深度学习模型

    利用预训练的模型有几个重要的好处: 合并超级简单 快速实现稳定(相同或更好)的模型性能 不需要太多的标签数据 迁移学习、预测和特征提取的通用用例 NLP领域的进步也鼓励使用预训练的语言模型,如GPT和GPT...利用预训练模型的一种常见技术是特征提取,在此过程中检索由预训练模型生成的中间表示,并将这些表示用作新模型的输入。通常假定这些最终的全连接层得到的是信息与解决新任务相关的。...结构在Keras中执行得更好 在Keras应用程序上不能复现Keras Applications上的已发布的基准测试,即使完全复制示例代码也是如此。...事实上,他们报告的准确率(截至2019年2月)通常高于实际的准确率。 当部署在服务器上或与其他Keras模型按顺序运行时,一些预先训练好的Keras模型会产生不一致或较低的精度。...在实践中,你应该保持预训练的参数不变(即,使用预训练好的模型作为特征提取器),或者用一个相当小的学习率来调整它们,以便不忘记原始模型中的所有内容。

    1.6K10

    NLP在预训练模型的发展中的应用:从原理到实践

    在具体任务中,研究者们可以使用预训练模型的权重作为初始化参数,然后在少量标注数据上进行微调,以适应具体任务的要求。这种迁移学习的方式显著降低了在特定任务上的数据需求,提高了模型的泛化能力。4....预训练模型在文本生成中的应用4.1 GPT-3的文本生成GPT-3是由OpenAI提出的预训练模型,具有1750亿个参数。...预训练模型在情感分析中的应用5.1 情感分析模型的微调预训练模型在情感分析任务中可以通过微调来适应特定领域或应用。通过在包含情感标签的数据上进行微调,模型能够更好地理解情感色彩,提高情感分析的准确性。...预训练模型在语义理解中的应用6.1 语义相似度计算预训练模型在语义相似度计算任务中有出色表现。通过输入两个句子,模型可以计算它们在语义上的相似度,为信息检索等任务提供支持。...预训练模型的挑战与未来展望虽然预训练模型在NLP领域取得了显著的成就,但仍然面临一些挑战。其中之一是模型的参数规模与计算资源的需求不断增加,限制了其在一些设备上的应用。

    36820

    Survey : 预训练模型在自然语言处理的现状

    ② 缺点 Transformer属于“重“架构、更少的模型偏置,Transformer通常需要大规模训练语料,以及在小规模语料上容易过拟合。 3、为什么需要预训练?...优点主要有三个: ① 在大规模文本语料上的预训练,能够学到通用的语言表示,并有助于下游任务; ② 预训练提供了更优的模型初始化,通常能够取得更好的泛化性能,以及在目标任务上加速收敛; ③ 预训练可以被当作一类在小规模数据集上避免过拟合的正则方法...4、NLP中预训练模型简介 (1)第一代预训练模型:预训练词向量(word embeddings) 主要是两个浅层的架构:CBOW(continuous bag-of-word 连续词袋模型)和 SG...(skip-gram) ① word2vec是这些最受欢迎的模型其中之一,它能够将预训练词向量应用到NLP的不同任务重; ② GloVe也是一个用于获取预训练词向量广泛使用的模型...② 由预训练模型BiLM,ELMO等输出的上下文表示,在大量NLP任务上,取得了大幅的提升。

    90010

    重新思考序列推荐中的预训练语言模型

    论文:arxiv.org/pdf/2404.08796.pdf 在预训练语言模型的帮助下,序列推荐取得了重大进展。...当前基于预训练语言模型的序列推荐模型直接使用预训练语言模型编码用户历史行为的文本序列来学习用户表示,而很少深入探索预训练语言模型在行为序列建模中的能力和适用性。...基于此,本文首先在预训练语言模型和基于预训练语言模型的序列推荐模型之间进行了广泛的模型分析,发现预训练语言模型在行为序列建模中存在严重的未充分利用(如下图1)和参数冗余(如下表1)的现象。...受此启发,本文探索了预训练语言模型在序列推荐中的不同轻量级应用,旨在最大限度地激发预训练语言模型用于序列推荐的能力,同时满足实际系统的效率和可用性需求。...在五个数据集上的广泛实验表明,与经典的序列推荐和基于预训练语言模型的序列推荐模型相比,所提出的简单而通用的框架带来了显著的改进,而没有增加额外的推理成本。

    16210

    自然语言处理中的预训练模型(下)

    「MASS」 基于多个语言的单语种 Seq2Seq MLM 预训练了一个 Seq2Seq 模型,在无监督神经机器翻译上取得了显著效果;「XNLG」 为跨语言神经语言生成提出了两步预训练:第一步基于单语种...虽然上述模型的架构不尽相同,但是其都使用了类似的预训练任务,如 MLM 和图像文本配对。...5.2 如何迁移 为了将 PTM 中的知识迁移到下游 NLP 任务中,我们需要考虑以下几个问题: 5.2.1 选择合适的预训练任务、模型结构和语料 不同的 PTM 在同样的下游任务中通常有不同的效果,因为其基于不同的预训练任务...5.2.3 是否进行微调 目前,模型迁移的方式可以分为两种:「特征提取」(预训练参数被冻结)和「微调」(预训练参数不被冻结,进行微调)。在特征提取的方式中,预训练模型被视作现成的特征提取器。...虽然两种方式都具有不错的效果,但是特征提取的方式需要更复杂的任务特定结构,且不利于迁移预训练模型中能够包含众多可迁移表示的中间层信息。因此,在很多下游任务中,更加倾向于使用微调的方式。

    1.9K30

    MobileNet V1官方预训练模型的使用

    /tensorflow/models/master/research/slim/nets/mobilenet_v1.py 1.2 下载MobileNet V1预训练模型 MobileNet V1预训练的模型文在如下地址中下载...github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md 打开以上网址,可以看到MobileNet V1官方预训练的模型...,官方提供了不同输入尺寸和不同网络中通道数的多个模型,并且提供了每个模型对应的精度。...[MobileNet V1不同输入和不同通道数的官方预训练模型] 这里以选择MobileNet_v1_1.0_192为例,表示网络中的所有卷积后的通道数为标准通道数(即1.0倍),输入图像尺寸为192X192...构建网络结构及加载模型参数 2.1 构建网络结构 在1.1小节中下载mobilenet_v1.py文件后,使用其中的mobilenet_v1函数构建网络结构静态图,如下代码所示。

    3.6K20

    在终端设备上实现语音识别:ARM开源了TensorFlow预训练模型

    △ 关键词识别pipeline 近日,ARM和斯坦福大学合作开源了预训练TensorFlow模型和它们的语音关键词识别代码,并将结果发表在论文Hello Edge: Keyword Spotting on...在论文中,研究人员还展示了不同的神经网络架构,包含DNN、CNN、Basic LSTM、LSTM、GRU、CRNN和DS-CNN,并将这些架构加入到预训练模型中。...预训练模型地址: https://github.com/ARM-software/ML-KWS-for-MCU/tree/master/Pretrained_models 论文摘要 在研究中,研究人员评估了神经网络架构...,并且在资源受限的微控制器上运行KWS。...他们训练了多种神经网络架构变体,并比较变体之间的准确性和存储/计算需求。 △ 神经网络模型的准确性 研究人员发现,在不损失精确度的情况下,在存储了计算资源受限的微控制器上优化这些神经网络架构可行。

    1.7K80

    图像预训练模型的起源解说和使用示例

    ImageNet 预训练模型 迁移学习(热门话题) 使用预训练模型识别未知图像 PyTorch ImageNet 的起源 在 2000 年代初期,大多数 AI 研究人员都专注于图像分类问题的模型算法,...它们被称为预训练模型,因为其他研究人员可以使用它们来解决类似的问题。 下面让我描述一些预训练模型的示例。 LeNet-5 (1989):经典的 CNN 框架 LeNet-5 是最早的卷积神经网络。...他们在模型参数中学习了图像的特征。如果其他的任务相似,那么利用预训练模型中的知识(参数)。迁移学习技术不需要重复训练大型模型的轮子,可以利用预训练模型来完成类似的任务,并且可以依赖更少的数据。...使用预训练模型识别未知图像 在本节中,将展示如何使用 VGG-16 预训练模型来识别图像,包括 (i) 如何加载图像,(ii) 如何格式化预训练模型所需的图像,以及 (iii) 如何应用预训练模型。...PyTorch 在其库中包含了许多预训练模型。从这个长长的 Pytorch 模型列表中选择一个预训练模型。下面我选择 VGG-16 并称之为“vgg16”。

    56020

    语义信息检索中的预训练模型(下)

    作者 | Chilia 哥伦比亚大学 nlp搜索推荐 整理 | NewBeeNLP 上一篇中,我们介绍了预训练模型在建立倒排索引中的应用:总结!...语义信息检索中的预训练模型 这一篇将介绍预训练模型在深度召回和精排中的应用。 4....预训练模型在深度召回中的应用 在深度召回中,我们使用Siamese网络生成query/doc的embedding,然后用ANN(approximate nearest neighbor)进行召回。...相似度即是query和document的每个embedding的点积最大值。 4.2 预训练任务 我们知道,预训练任务和下游任务越相似,模型在下游任务上的表现就越好。...预训练模型在精排中的应用 精排阶段可以是多个cascading模型级联构成,数据量越来越少、模型越来越复杂。

    2.1K30

    图像预训练模型的起源解说和使用示例

    ImageNet 预训练模型 迁移学习(热门话题) 使用预训练模型识别未知图像 PyTorch ImageNet 的起源 在 2000 年代初期,大多数 AI 研究人员都专注于图像分类问题的模型算法,...它们被称为预训练模型,因为其他研究人员可以使用它们来解决类似的问题。 下面让我描述一些预训练模型的示例。 LeNet-5 (1989):经典的 CNN 框架 LeNet-5 是最早的卷积神经网络。...他们在模型参数中学习了图像的特征。如果其他的任务相似,那么利用预训练模型中的知识(参数)。迁移学习技术不需要重复训练大型模型的轮子,可以利用预训练模型来完成类似的任务,并且可以依赖更少的数据。...使用预训练模型识别未知图像 在本节中,将展示如何使用 VGG-16 预训练模型来识别图像,包括 (i) 如何加载图像,(ii) 如何格式化预训练模型所需的图像,以及 (iii) 如何应用预训练模型。...PyTorch 在其库中包含了许多预训练模型。从这个长长的 Pytorch 模型列表中选择一个预训练模型。下面我选择 VGG-16 并称之为“vgg16”。

    88250

    大模型预训练中的数据处理及思考

    原文:https://zhuanlan.zhihu.com/p/641013454 整理: 青稞AI 大模型预训练需要从海量的文本数据中学习到充分的知识存储在其模型参数中。...The pile是一个高质量数据集,作者在构建的RefinedWeb数据集上训练模型超过了在The pile数据集上训练的效果 网页数据处理方法 CommonCrawl数据特点 • 很脏:有大量的情色、...• 在高质量专有数据集上训练多个epoch,并不比在web数据上充分训练一个epoch的效果好。...• 为了最大程度地保护每个人的隐私安全,使用正则表达式匹配私人信息(如身份证号码、电话号码、QQ号码、电子邮件地址等),并从数据集中删除它们。 • 不完整的句子在模型训练中可能会出现问题。...因此笔者认为多模态知识的加入可以降低文本数据的使用,突破Scaling law。 数据更好的利用 在模型已经表现很好的数据上可以降低训练。

    1.4K10

    大模型训练之难,难于上青天?预训练易用、效率超群的「李白」模型库来了!

    ,在 Bert、GPT-2 模型上,LiBai 的训练速度全方位超过 Megatron-LM。...HuggingFace:提供了全面的 SOTA Transformer 模型 ,便于使用预训练好的模型进行微调,提供强大的社区和生态,方便开发者使用预训练好的模型。...LiBai 模型库的与众不同之处在于,它不是以上任一分布式训练工具的简单升级或包装,而是基于 OneFlow 的分布式和图编译器能力构建的大规模预训练模型开发套件。...GPU 组上的切分方式,当用户使用 LiBai 的内置 layers 模块搭建好神经网络后,可以在自己的训练配置文件中修改分布式超参, 以实现不同的并行训练策略,上图所有值都取为 1 表示在单卡上运行...举例来说,在用户进行 4 卡训练时,网络的中间结果有一个 shape 为 (16, 8) 的 2D Parallel 的 tensor 在 GPU 上的划分方式为如下图, 在 LiBai 中。

    1.2K10
    领券