首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Akka的"Distributed Publish Subscribe in Cluster“中,有可能知道消息是在哪个主题上收到的吗?

在Akka的"Distributed Publish Subscribe in Cluster"中,可以通过订阅特定主题来接收消息。Akka的分布式发布订阅模式允许在集群中的不同节点之间发布和订阅消息。当一个节点发布消息时,其他节点可以订阅该主题并接收消息。

在Akka中,可以使用ActorRef来订阅主题。ActorRef是一个引用,可以用来发送和接收消息。通过向ActorRef发送订阅消息,可以指定要订阅的主题。当有消息发布到该主题时,订阅该主题的节点将收到消息。

由于Akka的分布式发布订阅模式是基于Actor模型的,消息的接收是通过Actor来处理的。每个订阅主题的节点都可以创建一个Actor来处理接收到的消息。当消息发布到特定主题时,Akka会将消息发送给订阅该主题的Actor,从而实现消息的接收和处理。

在Akka中,可以使用ClusterSharding来管理分布式Actor,以便在集群中跨节点进行消息的发布和订阅。ClusterSharding可以根据消息的主题将消息路由到正确的Actor,并确保在集群中的不同节点上创建和管理Actor的副本。

总结起来,在Akka的"Distributed Publish Subscribe in Cluster"中,可以通过订阅特定主题来接收消息。消息的接收是通过Actor来处理的,每个订阅主题的节点可以创建一个Actor来处理接收到的消息。可以使用ClusterSharding来管理分布式Actor,以实现消息的发布和订阅。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Akka-Cluster(2)- distributed pub/sub mechanism 分布式发布/订阅机制

    上期我们介绍了cluster singleton,它的作用是保证在一个集群环境里永远会有唯一一个singleton实例存在。具体使用方式是在集群所有节点部署ClusterSingletonManager,由集群中的leader节点选定其中一个节点并指示上面的ClusterSingletonManager运行一个cluster singleton实例。与singleton实例交互则通过即时构建ClusterSingletonProxy实例当作沟通目标。从应用场景来说cluster singleton应该是某种pull模式的应用:我们把singleton当作中央操作协调,比如说管理一个任务清单,多个ClusterSingletonProxy从任务清单中获取(pull)自己应该执行的任务。如果需要实现push模式的任务派送:即由singleton主动通知集群里某种类型的actor执行任务,那么通过ClusterSingletonProxy沟通就不适用了,使用pub/sub方式是一个可行的解决方案。

    04

    Netty实现高性能IOT服务器(Groza)之手撕MQTT协议篇上

    MQTT由Andy Stanford-Clark(IBM)和Arlen Nipper(Eurotech,现为Cirrus Link)于1999年开发,用于监测穿越沙漠的石油管道。目标是拥有一个带宽有效且使用很少电池电量的协议,因为这些设备是通过卫星链路连接的,当时这种设备非常昂贵。 与HTTP及其请求/响应范例相比,该协议使用发布/订阅体系结构。发布/订阅是事件驱动的,可以将消息推送到客户端。中央通信点是MQTT代理,它负责调度发送者和合法接收者之间的所有消息。向代理发布消息的每个客户端都在消息中包含一个主题。主题是代理的路由信息​。每个想要接收消息的客户端都订阅某个主题,并且代理将具有匹配主题的所有消息传递给客户端。因此,客户不必彼此了解,他们只通过主题进行通信。该架构支持高度可扩展的解决方案,而不依赖于数据生产者和数据使用者。

    02

    巴法云之MQTT物联网通信协议详解

    实时通信协议是物联网技术中的一项根本性技术,在数据的有效传输、及时通信方面不可或缺,在物联网领域发挥着至关重要的作用,因此物联网通信协议的制定至关重要。目前物联网设备广泛使用的有四大实时协议XMPP、REST/HTTP、CoAP以及MQTT。XMPP是一种基于标准通用标记语言的子集XML的协议,它继承了在XML环境中灵活的发展性,但对于嵌入式设备来说,解析非常困难;REST (Representational State Transfe)是一种架构风格,即表述性状态传递,它基于HTTP定义了一组约束和属性,适用于web服务,在物联网方面主要被应用于基于HTTP web服务的转化,但对于嵌入式设备而言,目前很多物联网接入设备大多属于资源受限型设备,只拥有有限的计算能力和有限的存储空间,故相比较而言REST/HTTP属于重量级协议;由于物联网中的很多设备属于资源受限型,The Internet Engineering Task Force (IETF)提出了一种基于REST架构的CoAP协议,Constrained Application Protocol (CoAP) 是一种针对受限设备的专用Internet应用协议,CoAP是一种应用层协议,它运行于UDP协议之上,但是一对一的协议;MQTT(Message Queuing Telemetry Transport) 消息队列遥测传输,是由IBM公司主导开发的物联网及时通信协议。MQTT是为大量计算能力有限的设备所设计的,使得设备工作在低带宽、不可靠网络的环境时,能够有效地进行网络数据交互,进而使得远程传感器和控制设备能够与服务器及时通讯,故本文选作MQTT协议作为本次物联网平台的通讯协议。

    02

    云端协议MQTT介绍

    一、简述 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输协议),是一种基于发布/订阅(publish/subscribe)模式的"轻量级"通讯协议,该协议构建于TCP/IP协议上,由IBM在1999年发布。MQTT最大优点在于,可以以极少的代码和有限的带宽,为连接远程设备提供实时可靠的消息服务。作为一种低开销、低带宽占用的即时通讯协议,使其在物联网、小型设备、移动应用等方面有较广泛的应用。 MQTT是一个基于客户端-服务器的消息发布/订阅传输协议。MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛。在很多情况下,包括受限的环境中,如:机器与机器(M2M)通信和物联网(IoT)。其在,通过卫星链路通信传感器、偶尔拨号的医疗设备、智能家居、及一些小型化设备中已广泛使用。

    03

    MQTT协议通俗讲解

    基本概念 Basic Conception Session 会话 定义 定义:某个客户端(由ClientID作为标识)和某个服务器之间的逻辑层面的通信 生命周期(存在时间):会话 >= 网络连接 ClientID 客户端唯一标识,服务端用于关联一个Session 只能包含这些 大写字母,小写字母 和 数字(0-9a-zA-Z),23个字符以内 如果 ClientID 在多次 TCP连接中保持一致,客户端和服务器端会保留会话信息(Session) 同一时间内 Server 和同一个 ClientID 只能保持一个 TCP 连接,再次连接会踢掉前一个 CleanSession 标记 在Connect时,由客户端设置 0 —— 开启会话重用机制。网络断开重连后,恢复之前的Session信息。需要客户端和服务器有相关Session持久化机制。 1 —— 关闭会话重用机制。每次Connect都是一个新Session,会话仅持续和网络连接同样长的时间。 客户端 Session 已经发送给服务端,但是还没有完成确认的 QoS 1 和 QoS 2 级别的消息 已从服务端接收,但是还没有完成确认的 QoS 2 级别的消息 服务器端 Session 会话是否存在,即使会话状态的其它部分都是空 (SessionFlag) 客户端的订阅信息 (ClientSubcription) 已经发送给客户端,但是还没有完成确认的 QoS 1 和 QoS 2 级别的消息 即将传输给客户端的 QoS 1 和 QoS 2 级别的消息 已从客户端接收,但是还没有完成确认的 QoS 2 级别的消息 (可选)准备发送给客户端的 QoS 0 级别的消息 长连接维护与管理 Keep Alive 心跳 目的是保持长连接的可靠性,以及双方对彼此是否在线的确认。 客户端在Connect的时候设置 Keep Alive 时长。如果服务端在 1.5 * KeepAlive 时间内没有收到客户端的报文,它必须断开客户端的网络连接 Keep Alive 的值由具体应用指定,一般是几分钟。允许的最大值是 18 小时 12 分 15 秒 Will 遗嘱 遗嘱消息(Will Message)存储在服务端,当网络连接关闭时,服务端必须发布这个遗嘱消息,所以被形象地称之为遗嘱,可用于通知异常断线。 客户端发送 DISCONNECT 关闭链接,遗嘱失效并删除 遗嘱消息发布的条件,包括: 服务端检测到了一个 I/O 错误或者网络故障 客户端在保持连接(Keep Alive)的时间内未能通讯 客户端没有先发送 DISCONNECT 报文直接关闭了网络连接 由于协议错误服务端关闭了网络连接 相关设置项,需要在Connect时,由客户端指定 Will Flag —— 遗嘱的总开关 0 -- 关闭遗嘱功能,Will QoS 和 Will Retain 必须为 0 1 -- 开启遗嘱功能,需要设置 Will Retain 和 Will QoS Will QoS —— 遗嘱消息 QoS 可取值 0、1、2,含义与消息QoS相同 Will Retain —— 遗嘱是否保留 0 -- 遗嘱消息不保留,后面再订阅不会收到消息 1 -- 遗嘱消息保留,持久存储 Will Topic —— 遗嘱话题 Will Payload —— 遗嘱消息内容 消息基本概念 报文标识 Packet Identifier 存在报文的可变报头部分,非零两个字节整数 (0-65535] 一个流程中重复:这些报文包含 PacketID,而且在一次通信流程内保持一致: PUBLISH(QoS>0 时),PUBACK,PUBREC,PUBREL,PUBCOMP SUBSCRIBE, SUBACK UNSUBSCIBE,UNSUBACK 新的不重复:客户端每次发送一个新的这些类型的报文时都必须分配一个当前 未使用的PacketID 当客户端处理完这个报文对应的确认后,这个报文标识符就释放可重用。 独立维护:客户端和服务端彼此独立地分配报文标识符。因此,客户端服务端组合使用相同的报文标识符可以实

    01
    领券