FOC又称矢量控制,是通过控制变频器输出电压的幅值和频率控制三相直流无刷电机的一种变频驱动控制方法。FOC的实质是运用坐标变换将三相静止坐标系下的电机相电流转换到相对于转子磁极轴线静止的旋转坐标系上,通过控制旋转坐标系下的矢量大小和方向达到控制电机目的。由于定子上的电压量、电流量、电动势等都是交流量,并都以同步转速在空间上不断旋转,控制算法难以实现控制。通过坐标变换之后,旋转同步矢量转换成静止矢量,电压量和电流量均变为直流量。再根据转矩公式,找出转矩与旋转坐标系上的被控制量之间关系,实时计算和控制转矩所需的直流给定量,从而间接控制电机达到其性能。由于各直流量是虚构的,在物理上并没有实际意义,因而还需通过逆变换变为实际的交流给定值。
这只是假设地球是一个球体,因为使用的距离公式是Haversine公式。这个公式仅适用于地球,而不是一个完美的球体。当在社交网站和其他大多数需要查询半径的应用中使用时,这些偏差都不算问题。但是,在最坏的情况下的偏差可能是0.5%,所以一些地理位置很关键的应用还是需要谨慎考虑。
接下来我将每周分享一个广大网友向我提问的经典问题。 本周问题,如何对二维表进行匹配! 原表格! 备注:以上人名,均属虚构,如有雷同!说明有缘!!! 咳咳!要做什么呢! 这位亲想要得到不同地区,不同
GEO 主要用于存储地理位置信息(纬度、经度、名称)添加到指定的key中。该功能在 Redis 3.2 版本新增。
编译 | AI科技大本营 参与 | 张建军 编辑 | 明 明 【AI科技大本营导读】贝叶斯法则和其他统计概念很难通过只用到字母的抽象公式、或者一些虚构的情景来理解。在作者William Koehrsen上过的许多课程中,通常会用一些并不是非常有用的例子来展示贝叶斯法则,例如抛硬币或者从缸里抽彩球,但是直到这一个项目才让作者最终理解了如何应用贝叶斯推断。 本文中作者展示了贝叶斯推断通过考虑新的证据来修正我们的信念,从而能更好地模拟真实世界。随着我们收集到更多的证据,我们需要持续调整我们的预测,而贝叶斯公式
"y下"和"y上"表示一条无限延伸的道路,"y下"表示这个道路的下限,"y上"表示这个道路的上限,
ImageDraw模块提供了图像对象的简单2D绘制。用户可以使用这个模块创建新的图像,注释或润饰已存在图像,为web应用实时产生各种图形。
例如,下图中六个矩形的高度就分别是 3,1,6,5,2,33,1,6,5,2,3。
Redis 的 GEO是在3.2版本才有的 官方说明:Redis 3.2 contains significant changes to the API and implementation of Redis. A new set of commands for Geo indexing was added (GEOADD, GEORADIUS and related commands). Redis GEO实现主要包含了以下两项技术: 使用geohash保存地理位置的坐标。 使用有序集合(zset)保
在列表中插入一个新的区间,你需要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间)。
问题描述 试题编号: 201312-3 试题名称: 最大的矩形 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi。这n个矩形构成了一个直方图。
试题编号: 201312-3 试题名称: 最大的矩形 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi。这n个矩形构成了一个直方图。例如,下图中六个矩形的高度就分别是3, 1, 6, 5, 2, 3。
【导读】算法是人们利用电脑解决问题的技巧。《图解算法》这本书以轻松的对话方式,采用图解的辅助说明,帮助读者简单、自然地掌握算法的基本概念,并养成主动思考的习惯,达到用算法解决实际问题的目的。本文是《图解算法》系列最后一篇。
分割字符串,把字符串和索引合成一个 pair<string, int>,放在容器 vector 里面进行排序,最后合成答案即可
https://blog.aksy.space/CCF-CSP/201312-3.html
在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi。这n个矩形构成了一个直方图。例如,下图中六个矩形的高度就分别是3, 1, 6, 5, 2, 3。
GNN, 即图神经网络(Graph Neural Networks), 一种专门处理图形数据的神经网络模型
在本文中,将分享一些常见的编程面试问题,这些问题来自于不同经验水平的程序员,囊括从刚大学毕业的人到具有一到两年经验的程序员。
题目汇总 以下链接均为我博客内对应博文,有解题思路和代码,不定时更新补充。 目前范围:Leetcode前150题 BFS广度优先题目 Word Ladder/Word Ladder II/单词接龙/单词接龙 II 难 给定一个起始字符串和一个目标字符串,现在将起始字符串按照特定的变换规则转换为目标字符串,求最少要进行多少次转换。转换规则为每次只能改变字符串中的一个字符,且每次转换后的字符串都要在给定的字符串集合中。 给定一个起始字符串和一个目标字符串,现在将起始字符串按照特定的变换规则转换为目标
在稀疏上下文信息的情况下,很难得到较高质量的低频单词嵌入,“模仿”被认为是一种可行的解决方案:通过给定标准算法的词嵌入,首先训练模型出现频次高的单词的嵌入,然后再计算低频单词的词嵌入。在本文中,我们引入了注意模仿模型,该模型不仅仅能够可以体现单词的表面形式,同样还可以访问所有可用的上下文,并学会使用最有用和最可靠的上下文来计算词嵌入。在对四项任务评估中,我们发现对于低频和中频单词,注意力模仿比以前的工作更出色。因此,注意力模仿可以改进词汇中大部分包括中频词的嵌入。
CDP 使用 Apache Ranger 进行数据安全管理。如果您希望利用 Ranger 进行集中安全管理,则需要将 HBase ACL 迁移到Ranger策略。这可以通过从 Cloudera Manager 访问的 Ranger webUI 来完成。但首先,让我们快速了解用于访问控制的 HBase 方法。
玩过Minecraft的人应该知道的 W 前进 S 后退 A向左 D 向右 鼠标右键:增加方块 鼠标左键:删除方块 Tab 切换飞行模式/正常模式 鼠标移动 控制视角 具体游戏即可知道
在表面绘制几个简单的形状。这些函数可用于渲染任何格式的曲面。渲染到硬件表面将比常规软件表面慢。
Python 今年还是很火,不仅是编程语言排行榜前二,更成为互联网公司最火热的招聘职位之一。伴随而来的则是面试题目越来越全面和深入化。有的时候不是你不会,而是触及到你的工作边缘,并没有更多的使用,可是面试却需要了解。
除了以上的一些运算符之外,Python还支持成员运算符,测试实例中包含了一系列的成员,包括字符串,列表或元组。
在此课之前有一个实践课,关于snappy的用途,具体参照以下这个文件就讲述的很详细了
各种社交软件里面都有附件的人的需求,在该应用中,我们查询附近 1 公里的食客,同时只需查询出 20 个即可。 解决基于地理位置的搜索,很多数据库品牌都支持:MySQL、MongoDB、Redis 等都能支持地理位置的存储。
本节更新的Coordinate Rorate Digital Computer的向量模式介绍与伪旋转处理,结尾处会总结旋转模式与向量模式的区别,在接下来的系列中会更新乘法器、除法器、sin函数、cos函数的verilog实现与matlab实现原理,并分享verilog与matlab代码。
使用matplotlib的pyplot模块,可以供用户直接使用最重要的绘图命令。多数情况下,我们希望创建一个图形并且立即展示出来,但是有时如果生成要通过更改其属性来修改的图形,就需要用面向对象的方式来处理图形对象。
V-REP的逆运动学(IK)计算模块非常强大和灵活。它允许处理几乎任何类型的机构在逆运动学模式(IK模式)或正运动学模式(FK模式)。IK的问题可以被看作是找到一个关节值对应于一个给定的身体元素(通常是末端执行器)的特定位置和/或方向的问题。更一般地说,它是从任务空间坐标到关节空间坐标的转换。例如,对于一个串行操作器,问题是在给定末端执行器的位置(和/或方向)的情况下,求出操作器中所有关节的值。逆问题——在给定关节值的情况下找到末端执行器位置——被称为FK问题,通常被认为是比IK更容易的任务。这当然是正确的,当处理开放的运动链,但不适用于一般类型的机械配置如下一个例子:
聚类算法是一种无监督学习方法,用于将数据集中的样本划分为多个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。在数据分析中,聚类算法可以帮助我们发现数据的内在结构和规律,从而为进一步的数据分析和挖掘提供有价值的信息。
在一些大型购物网站,我们常会看到一个功能叫“猜你喜欢”(或其它类似的名字),里面列出一些跟你买过商品相关的其它商品。网站的用户越多,或你在网站上购买的东西越多,它往往就猜的越准。在一些音乐网站、书评网站、电影网站也有类似的推荐系统,比如豆瓣上的“豆瓣猜”、百度音乐的“为你推荐”等,推荐结果都不错。 这些推荐系统的具体实现我们无法知晓,但原理是类似的,都是采用基于协同过滤的推荐机制。这里我们探讨一下这个推荐机制的原理。 举例 下图是一个用户对课程评分表。评分从1星到5星,灰色表示该用户没有对该课程评分。由图可
在一些大型购物网站,我们常会看到一个功能叫“猜你喜欢”(或其它类似的名字),里面列出一些跟你买过商品相关的其它商品。网站的用户越多,或你在网站上购买的东西越多,它往往就猜的越准。在一些音乐网站、书评网站、电影网站也有类似的推荐系统,比如豆瓣上的“豆瓣猜”、百度音乐的“为你推荐”等,推荐结果都不错。
了解到gdal能够完成这项任务,但是之前没有接触过gdal,所以现在网络上查找资料,发现如下链接所示的教程。
redis的数据结构 数据结构类型 结构存储的值 结构的读写能力 STRING 可以是字符串、整数、或者浮点数 对整个字符串或者字符串的其中一部分执行操作;对整数和浮点数执行自增或者自减 LIST 一个链表,链表上的每个节点都包含了一个字符串 从链表的两端推入或者弹出元素;根据偏移量对链表进行修剪;根据值查找或者移除元素 SET 包含字符串的无序收集器,并且被包含的每个字符串都是独一无二、各不相同的 添加、获取、移除单个元素;检查一个元素是否存在于集合中;计算交集、并集、差集;从集合里
博客原标题:Representation Power of Neural Networks
路径规划是指在给定起点和终点的情况下,确定一条从起点到终点的最佳路径的过程。它是计算机科学、人工智能和自动化领域中的一个重要问题,广泛应用于自动驾驶、物流配送、无人机导航等领域。
正椭圆的外接矩形可以直接根据椭圆中心以及长短半轴确定,但一般的斜椭圆就要复杂一些,本文记录计算斜椭圆外接矩形的过程。 问题描述 image.png 如上述动图所示,给定一个一般但中心为原点的椭圆,长半轴 a, 短半轴 b,角度 \alpha。 需要求得在给定 a,b,\alpha 下椭圆的外接矩形,可以将问题简化为在给定数据下求图中 height 变量。 一般化方程 正椭圆方程为: image.png 当顺时针旋转角度 \alpha 后,x,y 值可以表示为: image.png 带入正椭圆
可以用于基于地理位置的业务场景。比如:查询两地之间的距离,方圆几里存在的地理位置等等。
原题地址:https://leetcode-cn.com/problems/nim-game/ & https://leetcode-cn.com/problems/single-number/
给你一个下标从 0 开始的二维整数数组 grid ,它的大小为 m x n ,表示一个商店中物品的分布图。数组中的整数含义为:
问题描述: 求两个字符序列的公共最长子序列。 ---- 最长公共子串 在回到子序列问题之前,先来了解一下子串的问题。 例如,HISH和FISH两个字符序列的公共最长子串就是:ISH。很容易理解。 ---- 绘制网格 通过上一次背包问题的学习,给了我一些很重要的启示: 每种动态规划解决方案都设计网格。 动态规划可以帮助你在给定约束条件下找到最优解。 问题可分解为彼此独立且离散的子问题时,就可以使用动态规划法来解决。 那么,要解决这个问题的网格长什么样呢?要确定这一点,你首先得回答: 1.单元格中的值是什么?
使用Graphics2D类的setPaint方法可以为图形环境上的所有后续的绘制操作选择颜色。要想绘制多种颜色,就需要按照选择颜色,绘制图形,再选择颜色,再绘制图形的过程实施。
原作者: 2016 Nicolas P. Rougier MIT协议 翻译版权归我所有
按位运算符是把数字看作二进制来进行计算的。Python中的按位运算法则如下: 下表中变量 a 为 60,b 为 13。
本文介绍了OCR(光学字符识别)技术的基本概念、发展历程、主要应用领域,以及基于深度学习的OCR识别框架。与传统OCR相比,基于深度学习的OCR识别框架减少了三个步骤,降低了因误差累积对最终识别结果的影响。
领取专属 10元无门槛券
手把手带您无忧上云