首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

scikit-learn中的自动模型选择和复合特征空间

在处理复合特征空间时尤其如此,在复合特征空间中,我们希望对数据集中的不同特征应用不同的转换。...一个很好的例子是将文本文档与数字数据相结合,然而,在scikit-learn中,我找不到关于如何自动建模这种类型的特征空间的信息。...在接下来的内容中,你将看到如何构建这样一个系统:将带标签的文本文档集合作为输入;自动生成一些数值特征;转换不同的数据类型;将数据传递给分类器;然后搜索特征和转换的不同组合,以找到性能最佳的模型。...在每个示例中,fit()方法不执行任何操作,所有工作都体现在transform()方法中。 前两个转换符用于创建新的数字特征,这里我选择使用文档中的单词数量和文档中单词的平均长度作为特征。...工作流程如下 一系列文档进入管道,CountWords和MeanWordLength在管道中创建两个名为n_words和mean_word_length的数字列。

1.6K20

Nature npj|机器学习在疫苗靶标选择中的开发和应用

图1 合理设计疫苗流程示意图(a); 机器学习在疫苗靶标选择的任务中的应用:B和T细胞表位的发现[B细胞表位发现,抗原呈递的预测]和免疫原设计[抗原免疫原预测](b、d);通过epitope-paratope...B细胞表位识别 基于只有少数序列和结构属性可以确定某个残基是否可以为抗体结合位点的假设,很多B细胞表位发现的方法,主要应用基于特征的机器学习方法。...当然除了传统特征,基于蛋白质语言模型提取的残基表示也可以输入传统机器学习表位预测中。...主要缺点对机器学习模型中的特征的科学共识不清楚,比如与HLA的高亲和力和稳定性是否与高免疫相关,不太清楚。...基于结构的epitope-paratope相互作用方法,也依赖于特征选择,比如物理化学/几何特征以及基于图的界面区域表示。

17810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    YoloV8改进策略:ASF-YOLO,结合了空间和尺度特征在小目标和密集目标场景有效涨点

    本文提出了一种新型的Attentional Scale Sequence Fusion based You Only Look Once (YOLO)框架(ASF-YOLO),该框架结合了空间和尺度特征...)模块融合不同尺度的特征图以增加详细信息。...此外,还引入了一个Channel and Position Attention Mechanism (CPAM),以整合SSFF和TPE模块,该机制专注于信息通道和空间位置相关的小物体,以改进检测和分割性能...在两个细胞数据集上的实验验证表明,本文提出的ASF-YOLO模型在分割准确性和速度方面均表现出色,在2018 Data Science Bowl数据集上达到了0.91的box mAP、0.887的mask...spm=1001.2014.3001.5502 经过验证,在小目标和密集目标场景有效涨点。

    26610

    Bioinformatics | 通过在深度神经网络中应用局部和全局特征来预测蛋白质相互作用位点

    为解决此问题,作者在文章中提出了一种新型的文本卷积网络来获取蛋白质序列的全局特征,并将用滑动窗口方法获取的局部特征信息与之结合,来共同预测蛋白质相互作用位点且取得了不错的效果。...目前现有的计算方法中普遍都仅仅使用序列局部上下文特征来预测作用位点,而不包括全局序列信息,因此可能会对实验性能有所影响。...二、特征提取 2.1 特征选择 在特征选择方面,作者采用了在预测蛋白质相互作用位点问题上区分度较好的几组特征,如Position-specific scoring matrix (PSSM)、Secondary...由于Raw protein sequences特征信息为稀疏向量,所以采用嵌入层将其转化为较为稠密的向量,并将其与PSSM向量和SS特征向量进行结合作为预处理后的向量。...为了获取不同数目的临接残基之间的联系,文章采用了三个不同的卷积核(13,15和17)分别进行卷积,每次卷积都跟着最大池化操作,最终将三个被池化的特征信息结合,作为全局特征。

    1.1K10

    特征选择算法在微博应用中的演进历程

    特征选择在微博经历了从最原始的人工选择,到半自动特征选择,到全自动特征选择的过程,如图1所示。我们将详细介绍微博在各个阶段的实践与心得。...图1 特征选择在微博的演进 人工选择 在互联网领域,点击率预估(Click Through Rate)被广泛地应用于各个业务场景,在微博,CTR预估被应用在各个业务的互动率预估中。...再者,在人工特征选择完成后,需要整理相关数据进行重训练,从而验证新引入的特征对模型预测性能的提升是否有效,这是一个反复迭代的过程,期间会消耗大量的时间和精力。...在该类方法中,比较典型且应用广泛的有:皮尔森系数、卡方检验、互信息。方法的原理大同小异,考虑到卡方检验能够同时支持连续和离散特征,在微博我们采取了卡方检验对特征进行初步筛选。...本文首先介绍了不同特征选择算法的各自特点及其在微博业务应用中的演进历程,最后通过对比试验,给出了不同方法对于模型预测性能效果的提升,希望能够对读者有参考价值。

    1.3K30

    时间序列中的特征选择:在保持性能的同时加快预测速度

    例如,我们都知道特征选择是一种降低预测模型输入的特征维数的技术。特征选择是大多数机器学习管道中的一个重要步骤,主要用于提高性能。当减少特征时,就是降低了模型的复杂性,从而降低了训练和验证的时间。...在这篇文章中,我们展示了特征选择在减少预测推理时间方面的有效性,同时避免了性能的显着下降。tspiral 是一个 Python 包,它提供了各种预测技术。...这是一种简单而快速的选择特征的方法,因为我们处理后的数据可以使用通常应用于表格回归任务的相同技术来执行。 在直接预测的情况下,需要为每个预测步骤拟合一个单独的估计器。 需要为每个预测步骤进行选择。...而full的方法比dummy的和filter的方法性能更好,在递归的方法中,full和filtered的结果几乎相同。...这可能是一个很好的结果,因为我们可以通过简单的特征选择以更快的方式获得良好的预测。 上面的测试结果和表格都是利用 tspiral 的来进行处理和生成的。

    70520

    在NLP中结合文本和数字特征进行机器学习

    例如,当您通过twitter或新闻构建一个模型来预测产品未来的销售时,在考虑文本的同时考虑过去的销售数据、访问者数量、市场趋势等将会更有效。...您不会仅仅根据新闻情绪来预测股价的波动,而是会利用它来补充基于经济指标和历史价格的模型。...这篇文章展示了如何在scikit-learn(对于Tfidf)和pytorch(对于LSTM / BERT)中组合文本输入和数字输入。...然后在文本上应用Tfidf矢量化并输入分类器。该样本使用RandomForest作为估计器,并使用GridSearchCV在给定参数中搜索最佳模型,但它可以是其他任何参数。 ?...要在神经网络中处理文本,首先它应该以模型所期望的方式嵌入。有一个dropout 层也是常见的,以避免过拟合。该模型在与数字特征连接之前添加一个稠密层(即全连接层),以平衡特征的数量。

    2.1K10

    在 VMware 和腾讯的 offer 中应当选择哪个?

    知乎上有人提问: 在 VMware 和腾讯的 offer 中应当选择哪个?...有时候,你选择了一个不好的选择,其实可能会是一个好的选择,而你选择了一个看似好的,其实可能会是不好的。我说个几个真实的例子,前几个都是刚毕业几年的年轻人,都是在我身边的人。...5) 这个故事的发生在 2012 年左右吧,还是一个刚毕业的同学,拿到了北京豆瓣和上海腾讯的 offer,在豆瓣做基础设施的工作,在腾讯做广告相关的业务(好像是,我记不清了)。...6)做选择时,不要和大众的思维方式一样。因为,绝大多数人都是平庸的,所以,如果你的思维方式和大众一样,这意味着你做出来的选择也会和大众一样平庸。...在尊重个人的成长,和工作生活平衡的这方面,外国的公司会更好一些。”

    1.7K20

    【目标检测】开源 | 结合few-shot和自我监督在目标检测任务中应用的综述文章

    获取完整原文和代码,公众号回复:10091347771 论文地址: http://arxiv.org/pdf/2110.14711v2.pdf 代码: 公众号回复:10091347771 来源: Universite...Montreal 论文名称:A Survey of Self-Supervised and Few-Shot Object Detection 原文作者:Gabriel Huang 内容提要 标记数据通常是昂贵和耗时的...,特别是对于目标检测和实例分割等任务,这需要密集的图像标记。...虽然few-shot目标检测是关于用很少的数据在新的(看不见的)对象类上训练模型,但它仍然需要在许多标记了基类的示例上进行事先训练。...结合few-shot和自监督进行目标检测是一个很有前途的研究方向。在这个调查中,我们回顾和描述了最近的方法在few-shot和自我监督的目标检测。然后,我们给出了主要的结论,并讨论了未来的研究方向。

    76630

    在Elasticsearch中如何选择精确和近似的kNN搜索

    它不仅使用关键词,还考虑文档和查询的实际含义。语义搜索基于向量搜索。在向量搜索中,我们的文档都有计算过的向量嵌入。这些嵌入是用机器学习模型计算的,并以向量的形式存储在文档数据旁边。...num_candidates 在 kNN 参数 中控制这种行为。搜索的段数量。每个段都有一个需要搜索的 HNSW 图,需要将其结果与其他段图合并。...对于更高级的用例,例如:将 kNN 与其他查询结合(作为布尔查询或固定查询的一部分)使用 function_score 微调评分提高聚合和字段折叠的多样性你可以在这篇文章中了解 kNN 查询和 kNN...请记住,无论如何都要避免在 _source 中存储你的嵌入,以减少存储需求。...使用量化是内存和召回之间的权衡。我应该如何在精确和近似搜索之间选择?这里没有一刀切的答案。

    49411

    在seaborn中设置和选择颜色梯度

    seaborn在matplotlib的基础上进行开发,当然也继承了matplotlib的颜色梯度设置, 同时也自定义了一系列独特的颜色梯度。...在seaborn中,通过color_palette函数来设置颜色, 用法如下 >>> sns.color_palette() [(0.12156862745098039, 0.4666666666666667...该函数接受多种形式的参数 1. seaborn palette name 在seaborn中,提供了以下6种颜色梯度 1. deep 2. muted 3. bright 4. pastel 5. drak...4. cubehelix palette 通过子函数cubehelix_palette来实现,创建一个亮度线性变化的颜色梯度,在color_palette中,通过前缀ch:来标识对应的参数,用法如下 >...在seaborn中,还提供了4种独特的渐变色,用于绘制热图 1. rocket 2. flare 3. mako 4. crest rocker是默认的颜色梯度 >>> sns.heatmap(data

    3.8K10

    时间序列中的特征选择:在保持性能的同时加快预测速度

    例如,我们都知道特征选择是一种降低预测模型输入的特征维数的技术。特征选择是大多数机器学习管道中的一个重要步骤,主要用于提高性能。当减少特征时,就是降低了模型的复杂性,从而降低了训练和验证的时间。...在这篇文章中,我们展示了特征选择在减少预测推理时间方面的有效性,同时避免了性能的显着下降。tspiral 是一个 Python 包,它提供了各种预测技术。...这是一种简单而快速的选择特征的方法,因为我们处理后的数据可以使用通常应用于表格回归任务的相同技术来执行。 在直接预测的情况下,需要为每个预测步骤拟合一个单独的估计器。需要为每个预测步骤进行选择。...而full的方法比dummy的和filter的方法性能更好,在递归的方法中,full和filtered的结果几乎相同。...这可能是一个很好的结果,因为我们可以通过简单的特征选择以更快的方式获得良好的预测。 上面的测试结果和表格都是利用 tspiral 的来进行处理和生成的。

    67520

    【DB笔试面试646】在Oracle中,什么是基数(Cardinality)和可选择率(Selectivity)?

    ♣ 题目部分 在Oracle中,什么是基数(Cardinality)和可选择率(Selectivity)?...在Oracle数据库中,Oracle会默认认为SQL语句的WHERE条件中出现的各列彼此之间是独立的,是没有关联关系的。...在得到了SQL语句整个WHERE条件的组合可选择率后,Oracle会用它来估算整个SQL语句返回结果集的Cardinality,估算的方法就是用目标表的总记录数(NUM_ROWS)乘组合可选择率。...但Oracle默认认为的各列之间是独立的、没有关联关系的前提条件并不总是正确的,在实际的应用中各列之间有关联关系的情况实际上并不罕见。...,由于MIN(Current_ENDPOINT_NUMBER-Previous_ENDPOINT_NUMBER)=1,所以,ROUND(1/2)=1,和执行计划中的预估行数相吻合。

    86430

    OpenImage冠军方案:在物体检测中为分类和回归任务使用各自独立的特征图

    点击上方“深度学习技术前沿”,关注公众号,选择加“星标“或“置顶” ---- 导读 这篇文章来自商汤科技,是OpenImage竞赛的冠军方案,本文对物体检测中的分类和回归任务的冲突问题进行了重新的审视,...摘要 自从Fast RCNN以来,物体检测中的分类和回归都是共享的一个head,但是,分类和回归实际上是两个不一样的任务,在空间中所关注的内容也是不一样的,所以,共享一个检测头会对性能有伤害。...为了解决这个问题,他们引入了一个额外的head用来预测IOU,用作位置的置信度,然后把位置置信度和分类得分结合起来作为最终的分数。这在一定程度上缓解了这个问题,在空间上的不对齐的问题依然存在。...,其中,f(·)是特征提取器,C(·)和R(·)分别是将特征转化为分类和回归结果的函数,有些工作认为共享的f对于分类和回归不是最优的,于是把f分成了两个,fc和fr,虽然有了一定的提升,但是在特征空间维度上的冲突还是存在的...我们的目的是在空间维度对不同的任务进行解耦,在TSD中,上面的式子可以写成: ? 其中,Pc和Pr是从同一个P中预测得到的。

    99831

    python在以太坊开发中节点和网络如何选择?

    如何选择使用哪个节点? 由于以太坊的特点,这在很大程度上由个人的偏好来决定,但它会对安全性和可用性有重大影响。此外,节点软件正在快速发展,所以请需要对当前可选项进行研究。...一旦决定要选择什么节点选项,就需要选择连接哪个网络。通常,你在公有链和测试链之间进行选择。 我可以用MetaMask作为节点吗? MetaMask不是一个节点。它是一个与节点交互的接口。...如果你试图使用已在MetaMask中创建的帐户,请参阅如何使用Web3.Py中的MetaMask帐户? 我应该连接哪个网络? 一旦你回答了我该如何选择使用哪一个节点?你必须选择连接哪个网络。...有几个测试链可供选择。一个测试网络Ropsten,它是最类似于生产网络的。然而,当你想测试一个智能合约的时候,已经有垃圾邮件和攻击发生,这是有破坏性的。...在大多数节点中有一些选项。请参见选择如何连接到节点。 分享我们的python以太坊教程,主要是针对python工程师使用web3.py进行区块链以太坊开发的详解。

    1.9K30

    ReAct:在语言模型中结合推理和行为,实现更智能的AI

    今天我们介绍一篇论文《REACT: Synergizing Reasoning and Acting in Language Models》,它是来自谷歌研究院和普林斯顿大学的一组研究人员在探索了在语言模型中结合推理和行为的潜力后发布的结果...在问答和事实验证任务中,ReAct通过与简单的Wikipedia API交互,克服了推理中普遍存在的幻觉和错误传播问题。它生成了类似人类的解决任务的步骤,比没有推理痕迹的基线更容易解释。...在交互式决策基准中,ReAct的表现明显优于模仿和强化学习方法,即使只有一两个上下文示例。...推理和行动的重要性 研究人员还进行了消融实验,了解在不同任务中推理和行动的重要性。他们发现,ReAct的内部推理和外部行为的结合始终优于专注于推理或单独行动的基线。...通过在语言模型中结合推理和行为,已经证明了在一系列任务中的性能提高,以及增强的可解释性和可信度。随着人工智能的不断发展,推理和行为的整合将在创造更有能力和适应性的人工智能系统方面发挥关键作用。

    1.1K60

    轻松搞懂Word2vec FastText+BiLSTM、TextCNN、CNN+BiLSTM、BiLSTM+Attention实现中英文情感分类

    【Python】 SVM:轻松搞懂word2vec+SVM(支持向量机)实现中英文情感分类 爬虫:我爬取了知乎和微博上网友们在热门话题讨论的内容,并对其进行了情感分析和关键词提取 英文文本:【TF-IDF...TextCnn在文本分类问题上有着更加卓越的表现。从直观上理解,TextCNN通过一维卷积来获取句子中n-gram的特征表示。...CNN+BiLSTM 在一些任务当中,会选择在卷积层后加上一层LSTM或BiLSTM(反过来则不行),用于增强模型对语义的理解。CNN负责提取文本的特征,而BiLSTM负责理解句子的语义信息。...但是在情感分类中,也往往会选择不去除停用词。比方说“我可以!!!”和“我可以。”这两句话表达的情感差异是比较大的。当然啦,是否需要去除停用词,最好还是做下对比实验。...+BiLSTM后加上一层Attention,或者在BiLSTM+Attention模型中的嵌入层后加上一层卷积层即可。

    1.2K21

    在Mysql中CHAR和VARCHAR如何选择?给定的长度到底是用来干什么的?

    于是又讨论到了varchar在MySQL中的存储方式。,以证明增加长度所占用的空间并不大。那么我们就看看varchar在mysql中到底是如何存储的。 ?...varchar类型在mysql中是如何定义的? 先看看官方文档: ? ?...ALL IN ALL 在MySQL数据库中,用的最多的字符型数据类型就是Varchar和Char.。这两种数据类型虽然都是用来存放字符型数据,但是无论从结构还是从数据的保存方式来看,两者相差很大。...不过在实际工作中,由于某系特殊的原因,会在这里设置例外。...还是要评估实际需要的长度,然后选择一个最长的字段来设置字符长度。如果为了考虑冗余,可以留10%左右的字符长度。

    3.7K40
    领券