首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在最长的位置找到最近的街道

在最长的位置找到最近的街道,可以使用以下方法:

  1. 使用地图应用程序:在手机上打开地图应用程序,输入目的地,然后选择最近的街道。
  2. 使用导航设备:在车辆或行走时,使用导航设备,根据设备的指示找到最近的街道。
  3. 使用搜索引擎:在电脑或手机上使用搜索引擎,输入关键词,如“最近的街道”,然后根据搜索结果找到最佳路线。

总之,找到最近的街道需要使用地图应用程序、导航设备或搜索引擎等工具,根据具体情况选择合适的方法。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 通过卫星和街道图像进行多模式深度学习,以测量城市地区的收入,拥挤度和环境匮乏

    摘要:以大规模和低成本收集的数据(例如卫星和街道图像)有可能显着提高分辨率,空间覆盖率和测量城市不平等现象的时间频率。对于给定的地理区域,通常可以使用来自不同来源的多种类型的数据。然而,由于联合使用方法上的困难,大多数研究在进行测量时都使用单一类型的输入数据。我们提出了两种基于深度学习的方法,以结合利用卫星图像和街道图像来测量城市不平等现象。我们以伦敦为例,对三项选定的产出进行了案例研究,每项产出均按十分位类别衡量:收入,人满为患和环境剥夺。我们使用平均绝对误差(MAE)将我们提出的多峰模型与相应的单峰模型的性能进行比较。首先,将卫星图块附加到街道级别的图像上,以增强对可获得街道图像的位置的预测,从而将精确度提高20%,10%和9%,以收入,人满为患和居住环境的十分位数为单位。据我们所知,第二种方法是新颖的,它使用U-Net体系结构以高空间分辨率(例如,在我们的实验中为伦敦的3 m×3 m像素)对城市中的所有网格单元进行预测。它可以利用全市范围内的卫星图像可用性,以及从可用的街道级别图像中获得的稀疏信息,从而将准确性提高6%,10%和11%。我们还显示了两种方法的预测图示例,以直观地突出显示性能差异。

    04
    领券