首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

太厉害了!Seaborn也能做多种回归分析,统统只需一行代码

线性回归 lmplot绘制散点图及线性回归拟合线非常简单,只需要指定自变量和因变量即可,lmplot会自动完成线性回归拟合。回归模型的置信区间用回归线周围的半透明带绘制。...对数线性回归模型 通过设置参数logx 完成线性回归转换对数线性回归,其实质上是完成了输入空间x到输出空间y的非线性映射。...对数据做一些变换的目的是它能够让它符合我们所做的假设,使我们能够在已有理论上对其分析。...在某种意义上,回归函数 在从数据估计到的未知参数中是线性的。因此,多项式回归被认为是多元线性回归的特例。...对数线性回归 logx bool, 可选 如果为True,则估计y ~ log(x)形式的线性回归,但在输入空间中绘制散点图和回归模型。注意x必须是正的,这个才能成立。

4.1K21

计算与推断思维 十四、回归的推断

回归模型 简而言之,这样的模型认为,两个变量之间的底层关系是完全线性的;这条直线是我们想要识别的信号。但是,我们无法清楚地看到这条线。我们看到的是分散在这条线上的点。在每一点上,信号都被随机噪声污染。...我们需要点的另一个样本,以便我们可以绘制回归线穿过新的散点图,并找出其斜率。 但另一个样本从哪里得到呢? 你猜对了 - 我们将自举我们的原始样本。 这会给我们自举的散点图,通过它我们可以绘制回归线。...这是因为一些原始的点没有在样本中被选中。 估计真实斜率 我们可以多次自举散点图,并绘制穿过每个自举图的回归线。 每条线都有一个斜率。 我们可以简单收集所有的斜率并绘制经验直方图。...假设我们相信我们的数据遵循回归模型,并且我们拟合回归线来估计真实直线。 如果回归线不完全是平的,几乎总是如此,我们将观察到散点图中的一些线性关联。 但是,如果这种观察是假的呢?...一个简单的方法就是,按照我们在本节所做的操作,即绘制两个变量的散点图,看看它看起来是否大致线性,并均匀分布在一条线上。 我们还应该使用残差图,执行我们在前一节中开发的诊断。

99410
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python数据科学:线性回归诊断

    resid# 绘制收入与残差的散点图exp.plot('Income', 'resid', kind='scatter')plt.show()得到模型的残差情况,随着预测值增大,残差基本保持上下对称。...)# 训练数据集的残差exp['resid'] = ana2.resid# 绘制收入与残差的散点图exp.plot('Income', 'resid', kind='scatter')plt.show(..../ 02/ 强影响点当某个点离群太远时,拟合的回归线会受到这个点的强烈干扰,从而改变回归线的位置。这便是强影响点。这里我们可以使用预测值-学生化残差图来识别强影响点。...data=exp2).fit()exp2['Pred'] = ana3.predict(exp)# 训练数据集的残差exp2['resid'] = ana3.resid# 绘制收入与残差的散点图exp2...这个残差结果还是不错的。/ 03 / 多重共线性分析自变量之间不能有强共线性,又称多重共线性。本次使用方差膨胀因子去诊断及减轻多重共线性。在之前的数据加入当地房屋均价、当地平均收入数据。

    2.3K10

    计算与推断思维 十三、预测

    这意味着msrp绘制在纵轴上并且acceleration在横轴上。 hybrid.scatter('acceleration', 'msrp') 注意正相关。...事实上,我们可以将所有的变量绘制成标准单位,并且绘图看起来是一样的。 这给了我们一个方法,来比较两个散点图中的线性程度。...相关系数 相关系数测量两个变量之间线性关系的强度。 在图形上,它测量散点图聚集在一条直线上的程度。 相关系数这个术语不容易表述,所以它通常缩写为相关性并用r表示。...函数scatter_fit绘制数据的散点图,以及回归线。...检测非线性 绘制数据的散点图,通常表明了两个变量之间的关系是否是非线性的。 然而,通常情况下,残差图中比原始散点图中更容易发现非线性。

    2.4K10

    Matplotlib数据关系型图表(1)

    本篇文章主要介绍了matplotlib的数据关系型图表的分类、对每个类别做了简介,并初步对数值关系型常见图表的实现方式做了探讨。...散点图可以提供三类关键信息:1)变量之间是否具有关联趋势;2)如果存在关联趋势,是线性还是非线性;3)观察是否存在离群值,从而分析这些离群值对建模分析的影响。...示例2:在上述基础上,在散点图中增加回归线。...示例:现有一组数据,记录了2020年pm2.5的真实值和使用模型预测的pm2.5预测值,现将前1000条的真实值和预测值用散点图表示,并用置信椭圆在图上标出。...思路:1、构造一个置信椭圆的绘制方法 2、绘制散点图 3、调用置信椭圆方法在图上标出 注:置信椭圆方法参考matplotlib官方文档,本文仅作示例,感兴趣可以参考如下网址

    1.1K10

    Python Seaborn (4) 线性关系的可视化

    在最简单的调用中,两个函数绘制了两个变量 x 和 y 的散点图,然后拟合回归模型 y〜x 并绘制了该回归线的结果回归线和 95%置信区间: ? ?...当其中一个变量取值为离散型的时候,可以拟合一个线性回归。然而,这种数据集生成的简单散点图通常不是最优的: ?...一个常用的方法是为离散值添加一些随机噪声的 “抖动”(jitter),使得这些值的分布更加明晰。 值得注意的是,抖动仅适用于散点图数据,且不会影响拟合的回归线本身。 ?...分类关系的最佳方式是绘制相同轴上的两个级别,并使用颜色来区分它们: ? 除了颜色之外,还可以使用不同的散点图标记来使黑色和白色的图像更好地绘制。 您还可以完全控制所用的颜色: ?...控制绘制的大小和形状 在我们注意到由 regplot()和 lmplot()创建的默认绘图看起来是一样的,但在轴上却具有不同大小和形状。

    2.1K20

    Python绘图全景式教程:提升你的数据表达力

    在本教程中,我们将详细介绍如何使用Python进行数据绘图,并通过实例逐步学习各种常见的图形类型和绘图技巧。...以下是绘制交互式散点图的示例:import plotly.express as px# 加载数据tips = px.data.tips()# 绘制交互式散点图fig = px.scatter(tips,...案例分析:数据可视化应用用Matplotlib绘制线性回归图假设我们有一组简单的线性回归数据,以下是如何使用Matplotlib绘制回归线的示例:import numpy as npimport matplotlib.pyplot...回归线')plt.title("线性回归图")plt.xlabel("X")plt.ylabel("Y")plt.legend()plt.show()输出:一个包含数据点和回归线的图形,回归线能够很好地拟合数据...plt.savefig() 保存图形为文件 plt.savefig('plot.png') ax.plot() 在特定轴对象上绘制折线图

    8000

    MATLAB使用教程(1)从零开始,MATLAB 2023a中文版下载安装

    下面举一个简单的例子:假设我们需要绘制 y = sin(x) 在 [-pi, pi] 区间内的函数图像,可以通过以下代码实现:MatlabCopy Codex = -pi:0.01:pi; % 定义 x...坐标y = sin(x); % 计算 y 坐标plot(x, y); % 绘制函数图像通过上述代码,我们可以绘制出函数图像,更好地了解函数在该区间内的变化规律。...下面给出一个简单的实例:假设我们需要对某个数据集进行线性回归分析,可以通过以下代码实现:MatlabCopy Code% 加载数据data = load('data.txt');x = data(:,...1); % 提取 x 值y = data(:, 2); % 提取 y 值% 进行线性回归分析p = polyfit(x, y, 1);yfit = polyval(p, x);% 绘制散点图和回归线scatter...(x, y);hold on;plot(x, yfit);通过上述代码,我们可以对数据进行线性回归分析,并绘制出散点图和回归线。

    79620

    R绘图笔记 | 一般的散点图绘制

    3.其他散点图函数 除了上面的包和函数可以绘制散点图外,还有一些包也可以绘制复杂性的散点图。比如说car包中的scatterplot()函数和lattice包的xyplot()函数。...car包中的scatterplot()函数增强了散点图的许多功能,它可以很方便地绘制散点图,并能添加拟合曲线、边界箱线图和置信椭圆,还可以按子集绘图和交互式地识别点。...分别表示水平(x轴)和垂直(y轴)坐标的数字向量; boxplots # 如为x,则在下方绘制水平x轴的边界箱线图;如为y,则在左边绘制垂直y轴的边界箱线图; # 如为xy,则在水平和垂直轴上都绘制边界箱线图...;设置""或FALSE则不绘制边界箱线图; regLine # 默认添加拟合回归线;如为FALSE,则不添加; # 指定lm()函数拟合回归线,默认参数为regLine=list(method=lm,...# 分组变量或因子;使用不同的颜色、绘图符号等来绘制分组图形; by.groups # 为TRUE,则按分组拟合回归线; xlab、ylab # x轴和y轴标签; log # 绘制对数坐标轴; jitter

    5.3K20

    机器学习-线性回归(Linear Regression)介绍与python实现

    上面数据集的散点图如下所示: ? 在,任务是在上面的散点图中找到最适合的线,以便我们可以预测任何新特征值的响应。(即数据集中不存在的x值)该行称为回归线。回归线的方程表示为: ?...注意:可以在此处找到在简单线性回归中查找最小二乘估计的完整推导。...下面给出了使用Scikit-learn在波士顿房屋定价数据集上实现多元线性回归技术。...最好的分数是1.0,较低的值更差。 假设下面给出了线性回归模型对应用它的数据集的基本假设: 线性关系:响应和特征变量之间的关系应该是线性的。 可以使用散点图来测试线性假设。...同方差性:同方差性描述了一种情况,其中误差项(即,自变量和因变量之间的关系中的“噪声”或随机扰动)在自变量的所有值上是相同的。如下所示,图1具有同方差性,而图2具有异方差性。 ?

    3.4K20

    ggplot2绘制散点图配合拟合曲线和边际分布直方图

    图形展示 图形解读 ❝此图使用经典的企鹅数据集进行展示,在散点图的基础上按照分组添加拟合曲线及回归方程与R,P值,后使用ggExtra添加密度曲线与数据分布直方图,使用已有R包进行绘制非常的方便,此图大概有以下几点注意事项...它们有一些相似之处,但也有一些关键的区别。 ❞ stat_poly_line 是一个在 ggplot2 图形中添加多项式回归线的函数。这个函数直接计算多项式回归模型,并将拟合线添加到图形上。...它允许指定多项式的阶数,即回归方程中最高次项的次数。可直接在图形上添加拟合线,而不是基于数据点的平滑。 geom_smooth是一个更通用的函数,用于在 ggplot2 图形中添加平滑曲线或拟合线。...,点的大小表示体重 stat_poly_line(formula = y ~ x) + # 添加线性回归线 stat_poly_eq(formula = y ~ x, # 添加线性回归方程和统计量...,欢迎到小编的「淘宝店铺」 「R语言数据分析指南」购买「2023年度会员文档」同步更新中「售价149元」,内容主要包括各种「高分论文的图表分析复现以及一些个性化图表的绘制」均包含数据+代码;按照往年数据小编年产出约在

    2.1K70

    ggplot2--R语言宏基因组学统计分析(第四章)笔记

    通常通过某种方式(例如,平滑线、回归线、装箱或聚合、箱线图、散点图等)对数据进行汇总。...在散点图中,随机抖动点以减少过度绘制 尺度:每个几何属性都有一个函数,称为尺度;比例控制从数据到几何属性的映射,以确保数据值对该几何属性有效。此外,在统计变换之前执行缩放。...以下代码使用scale_x_log10()和scale_y_log10()函数进行对数转换,覆盖了默认的线性变换,这些线性变换是通过scale_y_continous()和scale_x_Continuity...尺度函数既可用于连续变量,也可用于分类变量。例如,在连续情况下,用刻度填充直方图或密度图;在离散情况下,比例用于填充直方图或条形图,或者在映射颜色、大小或形状时用于散点图。...刻面是在一个图中绘制多个图形。faceting的功能类似于lattice包中的panel。它经常出现在微生物组学研究的出版物上。在ggplot2中,刻面可以通过两种主要方式执行:网格刻面和包裹刻面。

    5.1K20

    百川归海,四类图统揽统计图:Seaborn|可视化系列03

    relplot默认绘制的是散点图,设置参数kind="line"可以将点连成线,也就是绘制折线图表示x和y的关系。...:是否使用逻辑回归;•marker:散点的标记字符;•color:控制散点和回归线的颜色; regplot()进行非线性回归的代码如下,主要是改了order参数,示例数据建的是一个y=x^3的数据集。...对数据分类绘制多条回归线的代码如下: sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips,markers=["...靠的就是kde参数,设置kde=False则只画分布直方图,没有密度曲线了;•rug:在直方图基础上再绘制地毯图效果,可以用sns.kdeplot(a)只画地毯图;•vertical:是否画垂直的直方图...可以看出晚餐在tips上数值范围更广,中位数也更高。

    3.1K30

    Python机器学习教程—线性回归的实现(不调库和调用sklearn库)

    那么线性回归中最难的部分也就是模型训练的部分——怎么寻找到最适合的斜率和截距,也就是公式中的 线性回归实现(不调用sklearn库) 首先设定数据,是员工的工龄(年限)对应薪水(千元)的数据,使用散点图观察一下大致是否符合线性回归的情况...w1=w1-lrate*d1 输出结果如下图,可观察到损失函数loss在不断的下降  根据训练好的模型在图上绘制样本点和回归线 # 绘制样本点 plt.grid(linestyle=':') plt.scatter...(x,y,s=60,color='dodgerblue',label='Samples') # 绘制回归线 pred_y=w0+w1*x plt.plot(x,pred_y,color='orangered...在预测时,要传入一个二维数组,也就是要预测的样本,系统会计算后输出。...() model.fit(train_x,train_y) # 针对所有训练样本,执行预测操作,绘制回归线 pred_train_y=model.predict(train_x) # 可视化 plt.grid

    1.5K41

    seaborn从入门到精通03-绘图功能实现04-回归拟合绘图Estimating regression fits

    绘制线性回归模型的函数-Functions for drawing linear regression models The two functions that can be used to visualize...在最简单的调用中,两个函数都绘制了两个变量x和y的散点图,然后拟合回归模型y ~ x,并绘制出最终的回归线和该回归的95%置信区间: These functions draw similar plots...这将使用回归线周围的半透明带绘制。使用自举法估计置信区间;对于大型数据集,建议通过将该参数设置为None来避免计算。...它拟合并移除一个简单的线性回归,然后绘制每个观测值的残差值。...out a relationship is to plot both levels on the same axes and to use color to distinguish them: 区分关系的最佳方法是在同一轴上绘制两个层次

    22720

    数据科学24 | 回归模型-基本概念与最小二乘法

    回归分析可以帮助人们了解在只有一个自变量变化时因变量的变化量。 用一个简单的例子介绍最小二乘回归法拟合线性模型: 例:UsingR包的galton数据集,包括配对的父母和孩子的身高。...图4.父母身高及相应的孩子身高的散点图 这个图中有许多点被重复绘制,数据的频数信息没有被展示出来。...最小二乘法拟合线性模型解释父母身高与孩子身高的关系,令回归线经过原点,即截距为0,这条线可用 表示。令 为父母身高,最适合的线性模型的斜率?使实际观测值与预测值之间的残差平方和 最小。...值的残差平方和变化 可以看到,斜率?=0.64时,残差平方和最小。可以用 预测孩子的身高。 在R中可以用lm()函数快速拟合线性模型。...5基础上重新绘制线性回归线: freqData <- as.data.frame(table(galton$parent,galton$child)) names(freqData) <- c("child

    4K20

    seaborn从入门到精通03-绘图功能实现04-回归拟合绘图Estimating regression fits

    绘制线性回归模型的函数-Functions for drawing linear regression models The two functions that can be used to visualize...在最简单的调用中,两个函数都绘制了两个变量x和y的散点图,然后拟合回归模型y ~ x,并绘制出最终的回归线和该回归的95%置信区间: These functions draw similar plots...这将使用回归线周围的半透明带绘制。使用自举法估计置信区间;对于大型数据集,建议通过将该参数设置为None来避免计算。...它拟合并移除一个简单的线性回归,然后绘制每个观测值的残差值。...out a relationship is to plot both levels on the same axes and to use color to distinguish them: 区分关系的最佳方法是在同一轴上绘制两个层次

    27710

    数据科学通识第八讲:数据可视化

    我们运用简单的线性回归分析,会发现这四组数据中 x 的均值都是9.0,y 的均值都是7.5。此外,它们的方差、皮尔逊相关系数及线性回归线都相同。...第一组数据的散点图是多数人看到上述统计特性的第一直觉,是最正常的一组数据。 第二组数据所反映的事实是一个精确的二次函数关系,只是在错误地应用了线性模型后,各项统计特性与第一组数据恰好都相同。...第四组数据更是一个极端的例子,由于存在着异常值,导致了平均数、方差、相关系数和线性回归线等所有的统计特性全部发生了偏差。...可视化图形介绍 散点图 散点图是因变量随自变量变化的大致趋势图。数据点绘制在直角坐标系上,以一个变量为横坐标,另一个变量为纵坐标。散点图利用坐标点(散点)的分布形态来反映变量的统计关系。...统计每组情况的出现的频数。 按统计结果来绘制图形。 直方图特别适合用于展示连续数据的分布情况,横轴上的数据是连续的,而纵轴上的数据代表数据对应的频数或频率。

    1.3K20
    领券