数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。 图表库 C3 – 以 d3 为基础构建的可重用图表库 Chart.js – 带有 canvas 标签的图表 Chartist.js – 具有强大浏览器兼容能力的响应式图表 Dimple – 适用于业务分析的面向对象的 API Dygraphs – 适用于大型数据集的交互式线性图表库 Echarts – 针对
导语:今天我们带来一篇来自 Adobe 工程师 Rohit Boggarapu 的文章。他在文章中介绍了一些适合网页开发者的数据可视化和绘图工具,让你不必再花大力气与枯燥的数据抗争。部分工具不要求写代码也可以使用!
在『Echarts』第 1 篇文章中,我们介绍了 Echarts 的概述及其强大的数据可视化功能。本篇将继续深入,重点带您了解 Echarts 的基本使用方法,包括如何快速安装、配置以及绘制简单的图表。
在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的发展,从传统只能依靠于flash、IE的vml,各个浏览器尚不统一的svg,到如今规范统一的canvas、svg为代表的html5技术,表现点、线、面要素的技术已经越来越规范成熟。我把前端数据可视化分为了五种: 1.图表 2.图谱 3.地图 4.关系图 5.立体图 我将按照顺序介绍62款前端可视化插件,下面就分享下其中34款图表插件: 1.amcharts url
各类图表功能,小程序自带API并没有提供,所以很多人就用了其他方法来实现,极乐大叔将这些实现方法和教程聚合一下,以便大家能够迅速而方便的使用。 — 相关文章 — 在微信小程序中绘制图表(part
距离上一篇文章过去了二十多天了,期间一直想把第二部分写完,结果在测试过程中遇到了各种坑爹的问题,到今天才算基本完成,也许还有后续,但趁着今天有时间就写出来吧,也算对这个项目的一个总结了 遇到最大问题: 项目的需求是在一个窗口里生成所有图表,还要考虑到整套打印,所以滚动加载和分页浏览不是最好的方案,这导致数据超级多的时候(大概会生成2000多页的报告且上不封顶),会造成页面假死,疯狂占用电脑内存,低配置的电脑根本无法加载,甚至造成死机 在项目结构上我们采用数据分发的方式控制组件的渲染,由大致小每层组件都对数据
我进入项目组后参加了第一次项目会议,在会议上项目经理为每个项目成员都分配了任务,我的任务是使用GoJS实现一个拖拽效果,这也是我第一次听说GoJS,在网上查阅相关的资源后发现GoJS的资料比较少,而且绝大多数资源都是英文的,这也为我学习及使用这个框架带来了不小的困难,好在项目经理看出这块做起来比较难后来又加了一个人,现在这块由我和一个同事两个人共同开发。
本文主要介绍使用ArcGIS JS API 4.14和eCharts 4.7.0来实现在地图上绘制二维图表中的柱状图的实现步骤。
Chart.js 是一个功能强大且易于使用的图表库。 支持多种类型的图表,包括折线图、柱状图、饼图、雷达图等。 Chart.js 具有简单的 API 和丰富的配置选项, 使得在 Vue 中使用它非常方便。
draw.io 是一款强大的免费在线图表绘制工具,支持创建流程图、组织结构图、时序图等多种图表类型。它提供丰富的形状库、强大的文本编辑和样式设置功能,使用户能够轻松创建专业级图表。draw.io 具有用户友好的界面,支持实时协作,可以存储到云端服务,并提供多种导出选项。作为一款开源软件,它广泛用于个人、教育和小型团队,为用户提供了灵活、便捷的图表绘制体验。
大家注意:因为微信最近又改了推送机制,经常有小伙伴说错过了之前被删的文章,或者一些限时福利,错过了就是错过了。所以建议大家加个星标,就能第一时间收到推送。
英文: Anton Shaleynikov 译文:葡萄城控件 www.cnblogs.com/powertoolsteam/p/top-9-javascript-charting-libraries.html 当前,数据可视化已经成为数据科学领域非常重要的一部分。不同网络系统中产生的数据,都需要经过适当的可视化处理,以便更好的呈现给用户读取和分析。 对任何一个组织来说,如果能够充分的获取数据、可视化数据和分析数据,那么就能很大程度上帮助了解数据产生的深层次原因,以便据此做出正确的决定。 对于前端开发人员
当前,数据可视化已经成为数据科学领域非常重要的一部分。不同网络系统中产生的数据,都需要经过适当的可视化处理,以便更好的呈现给用户读取和分析。 对任何一个组织来说,如果能够充分的获取数据、可视化数据和分析数据,那么就能很大程度上帮助了解数据产生的深层次原因,以便据此做出正确的决定。 对于前端开发人员来说,如果能够掌握交互式网页中的数据可视化技术,则是一项很棒的技能。当然,通过一些 JavaScript 的图表库也会使前端的数据可视化变得更加容易。使用这些库,开发者可以在无需考虑不同的语法所带来的编程难题的情况
原文链接:https://towardsdatascience.com/the-next-level-of-data-visualization-in-python-dd6e99039d5e
首先fasadmin已经引入了echarts核心js echarts.min.js
本文主要介绍使用ArcGIS JS API 4.14和eCharts 4.7.0来实现在地图上绘制网络路径图的实现步骤,包括二维和三维。
测试平台的数据展示与分析,我们主要使用开源工具ECharts来进行数据的展示与分析。
Matplotlib默认主题下绘制的可视化图形如一位高贵冷艳、不沾烟火的冰山女神,而cutecharts的图就像不拘常规、潇洒无羁的活力少年。
增加了一个【EasyShu图表宝典】功能,方便大家快速浏览EasyShu所有图表,也可以结合筛选功能,缩小范围去查看特定场景、兴趣、标签的图表,双击后可打开对应的图表示例文件进一步详细了解。
Matplotlib是一个绘图库,具有许多功能,可以以易于理解的格式显示数据。只需几行代码即可生成绘图,直方图,功率谱,条形图,错误图,散点图等对于简单的绘图,pyplot模块提供类似MATLAB的接口,特别是与IPython结合使用时。对于高级用户,您可以通过面向对象的界面或MATLAB用户熟悉的一组函数完全控制线型,字体属性,轴属性等。
为了使图表更具表现力,可以使用混搭图表对数据进行展现。 当多个系列的数据存在极强的不可分离的关联意义时,为了避免在同一个直角系内同时展现时产生混乱,需要使用联动的多图表对其进行展现。
每天上班必须做的一件事情,就是打开我们全球最大的程序员交友社区GitHub,因为这上面有太多开源的宝贝了,每天都乐此不疲,深耕于此,当然也收获了很多有用的东西,写出来分享一下。
文章首发:《如何在 Vue 中加入图表 - Vue echarts 使用教程 - 卡拉云》
在 JS 程序中,为了实现漂亮的图形、图表和数据可视化,我们选择使用开源库。生活在数据爆炸的时代,我们开发的每一个应用程序几乎都使用或者借助数据来提升用户体验。为了帮助你轻松地为你最喜欢的应用程序添加漂亮的数据可视化,这里列出了 2019 年最好的 JavaScript 数据可视化库(排名不分先后)。
D3和Kendo UI只是在web应用程序中创建图表的两种方式,选项范围从简单地在屏幕上绘制图形到使用复杂的图表组件。D3和Kendo UI都很受欢迎,两者都能完成工作。然而,相似之处到此为止,这两种方法代表了非常不同的方法,具有非常不同的特性。
上面的两个动图,就是条形竞赛图和折线竞赛图,今天我们就来看看都有哪些方便的方法来制作呢
现代社会早已进入读图时代,图像在一定上程度上取代了文字,占据了主导地位。对于数据分析来说,一张清晰的可视化图表确实比纷繁复杂的数字更清晰美观。随着科技的发展以及可视化需求的急剧增大,涌现了大批的数据可视化工具,通过对比分析市面上众多的数据可视化工具之后,我们挑选了几款给大家进行参考。
图表对于数据的可视化和网站的吸引力非常重要。可视化演示使得分析大块数据和传达信息变得更加容易。 图表库使您能够以一种令人惊叹的、易于理解的和交互式的方式可视化数据,并改进您的网站设计。
又是一月结束,打工人准时准点的汇报工作如期和大家见面啦。提到汇报,必不可少的一部分就是数据的汇总、分析。
本文介绍如何使用Mermaid绘制UML图。Mermaid 是一种轻量级的图形描述语言,用于绘制流程图、时序图、甘特图等各种图表。它采用简单的文本语法,使得用户能够快速绘制各种复杂图表,而无需深入学习图形绘制工具。通过简单的文本语法,用户可以绘制各种类型的图表。它适用于各种场景,包括流程图、时序图、甘特图等。使用Mermaid,你可以更轻松地表达和分享你的图形设计。
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
除了少数例外,所有带有 Google Charts 的网页都应该在网页的 中包含以下几行<head>:
数据可视化之初级篇 零编程工具 1. Tableau Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决
在新的HTML5标准中,新增了一个非常重要的元素—canvas元素。使用该元素,可以在页面中直接进行各种复杂图形的制作。因此,如果使用该元素绘制统计图,比之前使用服务器端控件来生成统计图的方法更加具有优越性,因为使用了该元素之后,绘制统计图的工作是直接在客户端进行的,而不再是在服务器端所完成的了。这不仅意味着不再占用服务器端的资源,而且意味着可以直接利用客户端计算机的强大资源,绘制统计图的速度也就可以大大地得到提高了。而且,因为用来控制canvas图形绘制的脚本代码是可以被压缩的,可以被缓存的,所以也就可以
ECharts 是一个基于 JavaScript 的开源可视化图表库,涵盖各行业图表,多达20多种图表和十几种组件,支持各种图表和组件的任意组合,满足各种需求,也是前端项目中大屏应用最多的。
npm install -g cnpm --registry=https://registry.npm.taobao.org
google developers 官方文档: https://developers.google.com/web/tools/chrome-devtools/
利用R语言也可以制作出漂亮的交互数据可视化,下面和大家分享一些常用的交互可视化的R包。
领取专属 10元无门槛券
手把手带您无忧上云