我们知道现在深度学习在使用大型数据集掌握一项任务(检测,分类等)方面取得了巨大的成功,但这并不是真正我们追求的“人工智能”。具体来说,我们可能训练了一个能做物理题很高分的学生,但是他也只能做物理题而已,面对数学题他只能吞下零分的命运;其次,在面对新的任务(数学题)的时候,我们的学生仍然需要大量的数据(数学题)进行训练,而在学习物理的时候积累下的学习方法(先验知识)却基本帮不上忙。
机器之心原创 作者:张倩 「太卷了!」 在经历了 GPT-4 和微软 Microsoft 365 Copilot 的连续轰炸后,相信很多人都有这样的感想。 与 GPT-3.5 相比,GPT-4 在很多方面都实现了大幅提升,比如在模拟律师考试中,它从原来的倒数 10% 进化到了正数 10%。当然,普通人对于这些专业考试可能没什么概念。但如果给你看一张图,你就明白它的提升有多么恐怖了: 图源:清华大学计算机系教授唐杰微博。链接:https://m.weibo.cn/detail/488033105399276
本文详细介绍了GPT-4和chatGPT的区别,GPT-4相对于chatGPT有哪些进步和提升,GPT-4到底有哪些强大之处,GPT-4提供了哪些新功能和新变化,GPT-4具有什么特点和应用场景,GPT-4会产生哪些影响。
大家都是通过高考考上大家心仪的学校的(当然也不乏一些保送的) 那么对于理科生来说一定 做过这一类的题:
---- 新智元报道 编辑:编辑部 【新智元导读】OpenAI的GPT-4在万众瞩目中闪亮登场,多模态功能太炸裂,简直要闪瞎人类的双眼。李飞飞高徒、斯坦福博士Jim Fan表示,GPT4凭借如此强大的推理能力,已经可以自己考上斯坦福了! 果然,能打败昨天的OpenAI的,只有今天的OpenAI。 刚刚,OpenAI震撼发布了大型多模态模型GPT-4,支持图像和文本的输入,并生成文本结果。 号称史上最先进的AI系统! GPT-4不仅有了眼睛可以看懂图片,而且在各大考试包括GRE几乎取得了满分成绩,
物理学上指大小相等、方向相反的二平行力,作用于一物体的二点,则不能合为一力,而仅能使物体回转,此二力称为「力偶」。
将一个大语言模型和prompt模板组合起来调用LLMChain,即可得到一个LLMChain对象,该对象的run实现的功能即给定输入自动使用prompt模板生成prompt,调用LLM得到回复。
不得了,GPT-4都学会自己做科研了? 最近,卡耐基梅隆大学的几位科学家发表了一篇论文,同时炸翻了AI圈和化学圈。 国内可以玩chatGPT可以的吗?可以的。不过需要海外号码以及邮箱进行注册 没有海外
我是菜鸟,我怕谁 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 10445 Accepted Submission(s): 6041 Problem Description lin2144是一只小菜鸟,都是笨鸟先飞,lin2144想来个菜鸟先飞,他从0点出发 一开始的飞行速度为1m/s,每过一个单位时间lin2144的飞行速度比上一个
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1、图像识别技术的引入 图像识别是人
Gemini一经放出,强大的多模态能力演示刷屏全网,而GPT-5的话题瞬间也被推上了热搜。
(接上篇) 吸引之处 那么到底什么是图像识别呢?世界上的大多数事物有自己的名称,图像识别的功能就是告诉人们这些图像上显示的是哪些事物。换句话来说,根据图像辨别出图像中出现的事物。 我们无法从椅子的内在去描述它, 能做的就是给出很多个不同椅子的样子,然后说:长得像这样的,我们就称为椅子。所以实际上,我们是通过将看到的事物与椅子的外观进行对比,如果两者很像,我们就认为这个事物叫椅子,如果不像,那它就不是椅子。 现在有很多系统采用这种吸引子Attractors。想像这样一个场景,在群山周围,一滴雨有可
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-le3xMBJl-1690429929886)(https://img-home.csdnimg.cn/images/20220524100510.png#pic_center)]
随着人工智能和机器学习技术在互联网的各个领域的广泛应用,其受攻击的可能性,以及其是否具备强抗打击能力一直是安全界一直关注的。之前关于机器学习模型攻击的探讨常常局限于对训练数据的污染。由于其模型经常趋向于封闭式的部署,该手段在真实的情况中并不实际可行。在GeekPwn2016硅谷分会场上,来自北美工业界和学术界的顶尖安全专家们针对当前流行的图形对象识别、语音识别的场景,为大家揭示了如何通过构造对抗性攻击数据,要么让其与源数据的差别细微到人类无法通过感官辨识到,要么该差别对人类感知没有本质变化,而机器学习模型可
移动互联网、智能手机以及社交网络的发展带来了海量图片信息,根据BI五月份的文章,Instagram每天图片上传量约为6000万张;今年2月份WhatsApp每天的图片发送量为5亿张;国内的微信朋友圈也是以图片分享为驱动。不受地域和语言限制的图片逐渐取代了繁琐而微妙的文字,成为了传词达意的主要媒介。图片成为互联网信息交流主要媒介的原因主要在于两点:
感觉自己什么也不会,导师放养,又想要拿一个offer,但时间有限,只有一年半。我想,很多同学在硕士阶段可能都有这样的困惑。本来这是一个很好的问题,但让我遗憾的是,高票回答聊的都是项目经验、竞赛、简历、LeetCode这些。感觉没有一个达到点上的,所以今天和大家聊聊这个问题,希望可以对迷茫当中的同学们有点帮助。
【新智元导读】近日,国际模式识别大会(ICPR 2020)拉开帷幕,各个workshop也公布了各项挑战赛的结果,来自中国的DeepBlueAI 团队斩获了由ICPR 2020、Kaggle和JDAI等联合举办大规模商品图像识别挑战赛冠军。
随着互联网技术和电子商务的迅猛发展,人们的购物方式逐步由传统实体店购物变为网络购物。为了充分满足客户海量、多样化的网上购物需求,人工智能零售系统需要快速地从图像和视频中自动识别出产品的存货单元(Stock Keeping Unit,SKU)级别的类别,然而,许多SKU级别的产品都是细粒度的,可以看出它们在视觉上是相似的。
图像识别市场估计将从2016年的159.5亿美元增长到2021年的389.2亿美元,在2016年至2021年之间的复合年增长率为19.5%。机器学习和高带宽数据服务的使用进步推动了这项技术的发展。 。电子商务,汽车,医疗保健和游戏等不同领域的公司正在迅速采用图像识别。根据MarketsandMarkets的报告,图像识别市场分为硬件,软件和服务。以智能手机和扫描仪为主的硬件部分可以在图像识别市场的增长中发挥巨大作用。越来越需要具有创新技术(例如监控摄像头和面部识别)的安全应用程序和产品。
搜狗公司CEO王小川在2016年最后一期《一站到底》结束时为大家留下的悬念:“我会让搜狗的机器人来替我‘报仇’的!” 依约,王小川“派来”的搜狗问答机器人汪仔登陆了新年全新改版《一站到底》。在人类获胜
题目描述 如图:有n个重物,每个重物系在一条足够长的绳子上。每条绳子自上而下穿过桌面上的洞,然后系在一起。图中X处就是公共的绳结。假设绳子是完全弹性的(不会造成能量损失),桌子足够高(因而重物不会垂到
据介绍,目前学术界对量子机器学习这一交叉领域包括两方面研究:一方面是利用量子力学的相干叠加或者纠缠等特性,构建能有实现加速的量子机器学习算法,如量子版本的 PCA 和 SVM 算法,以及能有效解决线性方程组求解的 HHL 算法等;另一方面,经典人工智能算法作为一种研究工具,能提供有效的信息提取和分类,如果可以建立起物理难题到人工智能算法的映射,就能够有效解决这些问题,目前已在理论上成功用于研究相变、多体物理等问题,但由于调控技术限制,罕有实验方面的研究。
图片是通过手机、相机、扫描仪等设备拍照而来,其中手机、相机拍出的照片会出现像素低、图像不正、聚焦不清楚等问题;
AI技术的火爆无疑是近几年创新应用上的一次革命。如今AI技术在众多科技公司的推动下已经渗透到各行各业,气象行业也不例外。将AI融入到天气预报、大气探测、天气预警以及天气服务中的尝试一直未间断。AI技术的应用背后是大数据的支撑和机器学习的广泛探索。利用AI技术进行雷达图像的识别,进行短临预报;利用AI技术与数值模式结合提升预报的准确率;利用AI技术进行探测数据的质量控制和融合处理;利用AI技术进行天气预警的精准推送;利用AI技术进行大雾的识别、天气现象的识别等等,可以说AI已经在气象领域中全面开花。在复杂的大气物理、化学等机理研究难以取得突破时,融入AI技术是提升气象技术的有利补充。关于天气预报、探测等AI技术的应用上经验比较少,跟大家分享一下我参与实施的在公众气象服务中的一些尝试应用。
当我们从一个比较宽泛的范围去审视一个问题,通过考虑各种证据,收集各种信息,思考不同的方案时,我们就是在运用发散性思维。
对于「支持中文」的大模型,不请出我们的弱智吧神题,就显得有些不尊重对手了【狗头】。
图像处理一般指数字图像处理,大多数依赖于软件实现。 其目的是去除干扰、噪声,将原始图像编程为适合计算机进行特征提取的形式。 图像处理主要包括图像采集、图像增强、图像复原、图像编码与压缩和图像分割。
【新智元导读】本文收录了arXiv.org上关于深度学习的一些最新的研究论文,列出了这些文章的内容,包括“深度学习八大灵感应用”、“深度学习用例”、“科学与工程中的深度学习应用”、“深度学习应用程序的下一次浪潮”等。针对这些文章缺乏系统方法的问题,提出了具体的组合矩阵、形态矩阵解决方案,并给出了预测示例。 隐藏的潜力 对深度学习研究和应用的兴趣从未这么热过。几乎每天都可以在arXiv.org找到无数的新研究论文。这些论文为我们描述了新的方法,人工神经网络可以靠这些方法应用于我们日常生活的各个领域。深度学习最
当今时代,我们需要很多的机器,比如汽车、飞机、电脑还有手机等等。为什么需要这些机器呢?
---- 新智元报道 来源:aiweirdness、gizmodo 编译:肖琴 【新智元导读】神经网络的专长之一是图像识别。谷歌、微软、IBM、Facebook等科技巨头都有自己的照片标签算法。但即使是顶尖的图像识别算法,也会犯非常奇怪的错误,它只看到它希望看到的东西。同样,即使是非常聪明的人类,也会被算法“愚弄”。 今天,只要你生活在互联网的世界,你就可能与神经网络交互。神经网络是一种机器学习算法,从语言翻译到金融建模等各种应用,神经网络都可以发挥作用。它的专长之一是图像识别。谷歌、微软、I
在 ChatGPT 引爆科技领域之后,人们一直在讨论 AI「下一步」的发展会是什么,很多学者都提到了多模态,我们并没有等太久。今天凌晨,OpenAI 发布了多模态预训练大模型 GPT-4。
从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。但是就题主的意思来看,这里的DNN应该特指全连接的神经元结构,并不包含卷积单元或是时间上的关联。 因此,题主一定要将DNN、CNN、RNN等进行对比,也未尝不可。其实,如果我们顺着神经网络技术发展的脉络,就很容易弄清这几种网络结构发明的初衷,和他们之间本质的区别。神经网络技术起源于上世纪五、六十年代,当时叫感知机(perc
近期,2023年度视觉与学习青年学者研讨会 (Vision And Learning SEminar, VALSE) 在无锡圆满落幕,此研讨会是图像视觉领域的重磅会议。作为智能文档处理领域代表的合合信息自然不会缺席,合合信息出席会议并进行智能文档处理技术研发与实践成果分享,重点介绍了其在版面分析与文档还原技术实现上的新突破。
Problem Description A single playing card can be placed on a table, carefully, so that the short edges of the card are parallel to the table’s edge, and half the length of the card hangs over the edge of the table. If the card hung any further out, with its center of gravity off the table, it would fall off the table and flutter to the floor. The same reasoning applies if the card were placed on another card, rather than on a table.
量子位 | 若朴 发自 凹非寺 春天来了,又到了人机交战的季节。 七年前的二月,IBM人工智能计算机Watson在答题节目《Jeopardy!(危险边缘)》中称王,击败了这个节目历史上最强大的两位人类高手。这个二月,搜狗人工智能机器人汪仔在答题节目《一站到底》中登场,击败了站到最后的人类选手。 在《jeopardy!》里,最强的人类选手最后不得不写下名句,俯首称臣;而在《一站到底》的赛场上,汪仔也表现出碾压般的优势。同样是答题节目,同样是人工智能,七年时间过去,现在的汪仔和当年的Watson,到底有何不同?
本文作者 猿辅导研究团队 猿辅导应用研究团队成立于2014年年中,一直从事深度学习在教育领域的应用和研究工作。团队成员均毕业于北京大学、清华大学、上海交大、中科院、中国香港大学等知名高校,大多数拥有硕士或博士学位。研究方向涵盖了图像识别、语音识别、自然语言理解、数据挖掘、深度学习等领域。团队成功运用深度学习技术,从零开始打造出活跃用户过亿的拍照搜题APP――小猿搜题,开源了分布式机器学习系统ytk-learn和分布式通信系统ytk-mp4j。此外,团队自主研发的一系列成果均成功应用到猿辅导公司的产品中。包括
就在刚刚,谷歌CEO皮猜和哈萨比斯在谷歌官网联名发文,宣布推出这一万众瞩目的多模态大模型。
【新智元导读】苹果公司 AI 研究主管 Russ Salakhutdinov 近日在 NIPS 2016 的一次闭门分享会上畅谈了苹果的 AI 研究现状。从其流出的几张幻灯片可以看出苹果的确做了不少研究,尤其在压缩神经网络和图像识别算法方面独有一套。期待苹果发表第一篇机器学习论文! 苹果公司长期以来一直对其在加州库比蒂诺的实验室进行的研究保持神秘。原因很好理解。但至少在人工智能领域,苹果显示出要开始揭开其研究的神秘面纱的迹象。12月6日,在 NIPS 会议的一场闭门午餐会上,苹果公司机器学习团队的新主管 R
编者按:一年前,Facebook发布了照片分享应用Moments,于前不久关闭了iOS版Facebook照片同步功能,力推Moments应用,该应用运用了人脸识别技术。不过,Facebook人工智能实验室负责人Yann Lecun在为我们通俗易懂地介绍Moments的应用原理时表示,除了简单的人脸识别技术,Facebook将利用更卓越的计算机视觉技术和AI技术为用户提供更多便利,如尝试开发计算机的移情能力,当然,这些便利的应用背后需要强大的算法和繁琐的训练过程做支撑。让我们一起期待未来计算机能够更好地理解人
在快递行业发达的今天,有数不胜数的货运公司、快递公司,这些公司都有自己的运输车辆,请师傅开车送货。
人工智能应用的范围很广,包括:计算机科学,金融贸易,医药,诊断,重工业,运输,通讯,法律,科学发现,游戏,音乐等诸多方面。今天介绍19个AI热门应用领域
怎么算呢?趁着高数知识还没忘完,赶紧拿起纸演算起来。大部分人是这么做的。但是如果现在跟你说,可以用 AI 来做,你信吗?
Vincent Vanhoucke是Google的首席科学家,斯坦福大学电子工程学博士,目前在Google Brain主导机器人相关的项目。Vanhoucke主要的研究领域是语音识别、计算机视觉和机器人等领域,他还即将主持机器人领域的盛会CoRL 2017(Conference on Robot Learning)。 Vanhoucke认为,机器智能现在已经发展到一个相当的水准,在某些特定情境下的表现可以媲美(甚至超越)人类,比如机器视觉、机器翻译、语音识别,现在是时候让这些能力在物理世界中发挥效应了。他在
在著名的微软MSMARCO(Microsoft MAchine Reading COmprehension)机器阅读理解测试排行上,现在排名第一的团队,已经悄然变成了猿辅导。
6月24日下午,钛媒体和杉数科技主办的2017 AI 大师论坛在京举行,论坛邀请了五位算法优化、机器学习领域的顶尖教授、学者出席并发表学术演讲,他们分别是斯坦福大学李国鼎工程讲座教授叶荫宇,佐治亚理工
经过前六章的阅读,我从三个世界、数据法则、信息纽带、知识升华、自然智能以及人工智能六个方面对于信息科学技术与创新有了深层次的认识与了解。从对于三个世界的描述中,我了解到了物理、生物和数字世界的区别和联系。同时也明白了物质、能量与数据构成了人类所赖以生存和发展的客观和主观世界。通过这样的三个世界基本底层架构的认知,展开了之后的讨论,之后详细地了解到数据的作用,例如数据在生命的产生与演化中起着至关重要的作用,在生命体内DNA中的数据就记录了遗传的基本信息,大脑中的储存数据量与神经元细胞和它们的数量存在着正相关的关系。 数据之间的快速传导使各网络之间可以不考虑地理上的联系而重新组合在一起。信息的传递和交换也变得日益频繁。而在之后对于信息的定义及作用介绍之中,通过对于信息法则的介绍以及对于信息编码过程的展示,让我明白了信息的结构、含义与效用。信息的提取与升华成为知识,我对知识的描述性与程序性、显性与隐性、公共性与私密性有了进一步的认识。由知识的不断进化集合的过程中,自然智能也逐渐彰显出其作用,自然智能也拥有其法则。无独有偶,针对于自然智能的研究也不断启发着人工智能的发展。上一章重点讲述了人工智能的历史、概念、算法以及人工智能的面临障碍。使我对于人工智能的理解有了很大提升。本章就人工智能的应用技术进行了更深层次的分析与讲解。同时本章讨论的课题如下:
GeekPwn虽然是一场黑客趴,但也非常适合普通用户来参与,尤其是在蒋昌建老师这位老司机带路的情况下。10月24日,草榴节……呸!程序员节,来自全国各地还有部分海外的黑客们汇聚魔都,这场为期两天的黑客趴GeekPwn 便正式拉开帷幕。
领取专属 10元无门槛券
手把手带您无忧上云