近日,顶象发布《人脸识别安全白皮书》。该白皮书共有8章73节,系统对人脸识别的组成、人脸识别的内在缺陷、人脸识别的潜在安全隐患、人脸识别威胁产生的原因、人脸识别安全保障思路、人脸识别安全解决方案、国家对人脸识别威胁的治理等进行了详细介绍及重点分析。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。该白皮书重点对人脸识别组成以及人脸识别安全面临的阿全风险进行了详细介绍与分析。
面对当下的行业,阅面背靠嵌入式视觉算法,以图像识别消费级产品切入,立志做一个行业突破者。 当下,人机交互成为了人工智能技术发展的一大重点领域。在过去的2016年里,除了语音交互技术,视觉交互的发展速度
去年,马云爸爸的支付宝开启了一个“刷脸”登陆功能,本月初,微信也搞了一个“至尊宝能量继承者”活动,要求用户进行人脸认证以加强对于QQ账号的保护……类似此种的“安防”情景还有许多。 从以上来看,我们可以知道,基于人们对于安全性的进一步高要求,安防领域正在经受一场由“人脸识别”技术所领导的变革。 人脸识别+安防前景广阔 据了解,人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而将检测到的人脸与库中数据进行对比、识别等一系列
随着技术进入成熟期,在最容易实现落地的B端市场,图像识别正逐渐扩大自己的市场。 近日,美国权威杂志《MIT科技评论》(MIT Technology Review)公布了2017年度全球十大突破技术,其中属于AI范畴有三项技术,分别是强化学习、自动驾驶货车和刷脸支付。 其中,值得我们注意的是,虽然同属于2017年的突破性技术,但在距离进入成熟期的时间上,相对于强化学习和自动驾驶货车的还需要1-2年和5-10年时间,刷脸支付技术现在就已经进入了这一阶段。 根据平安证券发布的《通信行业人工智能图像识别专题报告》显
根据今日俄罗斯国家媒体 Sputnik 报道,华为目前已经完成对一家名为 Vocord 的莫斯科安防技术企业的收购。
1 图像识别是什么? 2 图像识别的应用场景有哪些? 什么是图像识别 图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。根据观测到的图像,对其中的物体分辨其类别
应用背景:安全帽作为一种最常见和实用的个人防护用具,能够有效地防止和减轻外来危险源对头部的伤害。但在现场操作过程中,安全帽的佩戴很容易人为忽略,引发了不少人身伤害事故。为了保证工作人员都能在作业中佩戴安全帽,保障作业人员安全,清眸图像安全帽识别算法系统应运而生。
应用背景:安全帽作为一种最常见和实用的个人防护用具,能够有效地防止和减轻外来危险源对头部的伤害。但在现场操作过程中,安全帽的佩戴很容易人为忽略,引发了不少人身伤害事故。为了保证工作人员都能在作业中佩戴安全帽,保障作业人员安全,富维图像安全帽识别算法系统应运而生。
工人是否佩戴安全帽图像识别系统能从繁杂的场景下对对未戴安全帽多个目标同时开展识别分析,识别、记录和预警提醒。工人是否佩戴安全帽图像识别系统若发现违规操作,直接向有关人员推送报警消息记录,协助有关管理者进行安全生产工作,大大提升了安全监督的时效性,减少了人力成本。
让检测系统像人一样思考。 作者 | 王晓然 编辑 | 陈彩娴 人工智能有60多年的发展历程,回溯一下,人工智能经过了以知识驱动,到以数据驱动,走到了现在的以安全可控为核心的阶段。 近七年来,蚂蚁集团不断在AI的安全可信方向上深耕,把以可信AI为基础的IMAGE风控体系作为抵御数字时代风险的核心能力。 刷脸、指纹等生物识别技术生物识别的应用离不开深度学习AI的爆发式发展,如何保证生物识别中的AI安全可靠,成为了社会关注的焦点问题。 在前段时间的云栖大会上,蚂蚁安全实验室旗下专攻终端设备生物核身安全性的天玑实验
利用计算机图像识别、地址库、合卷积神经网提升手写运单机器有效识别率和准确率,大幅度地减少人工输单的工作量和差错可能。
【新智元导读】4月18日,清华大学《人工智能前沿与产业趋势》系列讲座第四讲,深睿医疗首席科学家、美国计算机协会杰出科学家、IEEE Fellow俞益洲为大家介绍了目前计算机视觉的应用和落地,特别是在医疗影像方面的发展状况、遭遇的挑战、以及克服挑战的思路。最后和清华大学自动化系副教授、博导鲁继文以及知名天使投资人、梅花创投创始合伙人吴世春一起对计算机视觉的落地机会进行了畅想。
安全帽ai自动识别算法是人工智能与视觉系统算法技术性的结合。通过10年的工艺累积,SuiJi vision具备深层次的人工智能自主学习、图像识别、行为分析、发展趋势认知、风险预警等工作能力,安全帽ai自动识别算法可以根据认知情景动态性、即时解析和管理方法情景个人行为来预知未来的风险性。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。该白皮书就保障人脸识别系统安全的能力列出具体要求,并推荐了专业的人脸安全解决方案。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。《白皮书》就金融行业存在人脸安全风险进行了详细分析,并对在公共服务领域人脸安全的安全防护提出具体建议。
1)无人值守、智能化。随着人工智能技术的发展,安防监控设备不仅可以对场所进行实时监控,还可以通过图像识别、语音识别等技术实现智能化管理。
近日,在国家工业信息安全发展研究中心主办的人工智能融合发展与安全应用研讨会上,国家语音及图像识别产品质量检验检测中心正式发布了首批人脸识别系统安全测评结果—— 腾讯云慧眼成为首批通过测评的人脸识别系统安全产品。 国家语音及图像识别产品质量监督检验中心(简称“国检中心”)是国家市场监督管理总局于2020年授予CMA和CAL资质,是国家级的第三方检验检测中心。 据介绍,这是首个面向人脸识别系统安全性的国家级检测与评估。 依据T/CESA1124-2020《信息安全技术人脸比对模型安全技术规范》,通过包括算法层
今年7月份,两大银行接连爆出多名储户的数百万存款被异地“刷脸”盗取,引发全社会关注。其实,因人脸安全问题导致资金被盗、被贷款安全事件已不是新鲜事。
近日,顶象发布《人脸识别安全白皮书》。《白皮书》对人脸安全事件、风险产生的原因进行了详细介绍及重点分析。
还记得当年火爆朋友圈的军装照小应用吗?它背后的人脸融合技术,以及未来人脸融合的新趋势,你一定不能错过! 如何能够搭建一套有效稳定的图像识别系统呢? 如何通过使用腾讯云API搭建自己的图像识别应用? 腾
今年,市场研究&咨询公司GrandViewResearch发布了一份深度学习市场分析报告。报告表明,2016年全球深度学习市场估值为2.72亿美元,其在自动驾驶和医疗行业的应用越来越多,有望为行业增长
艺术创作辅助:艺术家使用AI绘画工具来创作和实验,例如利用风格迁移生成不同艺术风格的作品。
安全帽佩戴检测系统在监控摄像头可监控到的地区画面中自动检索施工工作人员是不是戴安全帽、反光衣,假如见到工作人员不戴安全帽、反光衣,安全帽佩戴检测系统将开展语音播报,纪录违纪行为。在工程建筑、电力安装工程、煤矿业、石油化工、化工企业等高危企业,可以预防重大事故的合理防止,不用人工手动操作进行,提升安全生产智能化系统管理效率。安全帽佩戴检测系统运用智能视频分析沿深度神经网络技术相结合,具备高精度、兼容强、特点可靠性强的特性。
【新智元导读】李飞飞加入谷歌是最近 AI 界的一件大事,反映了谷歌、微软、亚马逊、Facebook 等科技巨头正在积极重塑自己在人工智能领域的策略。这些公司不仅在内部推广 AI 技术,把 AI 应用于它们现有的产品,同时也致力于将这些技术推广到其他技术领域。本文梳理了这些大公司的最新动向和策略,无可置疑的是,他们都是认真的,AI 将在我们的未来发挥越来越大的作用。 李飞飞加入谷歌是最近 AI 界的一件大事。作为斯坦福大学人工智能和视觉实验室主任,李飞飞创建了全球最大的图像识别数据库 ImageNet,加速了
日前,瑞芯微Rockchip正式发布基于RK3399平台的Android 8.1 Neural Networks API (NNAPI)优化SDK,提供模型更通用、性能更强大的AI运算支持。
深度学习最早兴起于图像识别,但在短短几年时间内,深度学习推广到了机器学习的各个领域,如:图像识别、语音识别、自然语言处理、机器人等等。 计算机视觉是深度学习技术最早实现突破行成就的领域。在2012年,AlexNet赢得了图像分类比赛ILSVRC的冠军,至此深度学习开始收到广泛关注。这只是一个开始,在2013年的比赛中,前20名的算法都使用的是深度学习。在2013年后,ILSVRC大赛就只有深度学习算法参赛了。 深度学习算法在图像分类上的错误率小于4%,已经完全超越了人类标注的错误率。 图像分类 物体
据腾讯研究院统计,截至2017年6月,全球人工智能初创企业共计2617家。美国占据1078家居首,中国以592家企业排名第二,其后分别是英国,以色列,加拿大等国家。本文中选取了国外和国内部分有代表性的AI产业链条上相关公司就行分析(排名不分先后),希望对有志于从事人工智能相关工作或者想了解AI行业目前发展现状的朋友能有所帮助。小编会从AI芯片、应用层算法、应用领域等方面对相关公司进行盘点,由于部分公司可能会涉及产业链条上不同的领域,文中侧重选取了某些点进行分析阐述。备注:文中涉及到的企业估值均源于公开资料,本文对数字真实性不做任何担保;对于企业的明星指数是小编根据公开资料以及行业内部朋友反馈做的综合评估,不作为投资参考。
人工智能(Artificial Intelligence,简称AI)作为一项革命性的技术,正在改变我们的生活和业务方式。在当今数字化时代,腾讯云作为领先的云计算服务提供商,为开发者提供了广泛的人工智能服务和工具,为他们开拓创新的道路铺平了道路。
全球最大存储器厂商(三星)和全球最大Fintech独角兽(蚂蚁金服)的加持对这家成立不到两年的初创公司意味深长。 昨天,深鉴科技召开了成立以来的第一次新品发布会,正式宣布已完成约4000万美金的A+轮融资。本轮融资由蚂蚁金服与三星风投领投,招商局创投与华创资本跟投。深鉴科技创始人、CEO 姚颂表示,本次融资将继续用于安防、数据中心领域及后续芯片产品的开发。深鉴与三星将展开包括存储在内的多方面合作。而蚂蚁金服的战略资源注入,将帮助深鉴进一步开拓包括金融在内的更多应用场景,而关于金融领域的进一步布局,深鉴没有
随着城市化进程的快速推进,城市安全问题成为了人们关注的焦点。传统的安防手段已经无法满足现代城市复杂多变的安全需求。因此,结合电子眼与无人机技术,实现二者之间的协同应用,成为提升城市安防能力的重要途径。
谷歌的人工智能平台Alpha Go让AI再次进入了普通老百姓的视野,我记得2016年3月时Alpha Go第一轮测试结果就令大家十分震惊。随着技术的进步,AI的能力一定会越来越强。我们可以看到近两年AI在深度学习方面的技术进展成果显著。今天我为大家准备了一些最近与摄像头相关的人工智能研究成果。
视频图像智能识别系统根据优化算法对项目现场封闭地区开展监控和防卸,对项目现场实时全天候监控识别分析,当监测到有人的身体进入时,视频图像智能识别系统会全自动警报和警示,适用三种颜色智能展现不一样情况,数据可视化监管 。在项目施工作业区域开展侵入监管,如安全防护网、防护栏、低路基工程段、路基斜坡、施工进出口识别、隧道、公路桥梁段、公交车铁路线等道路,在监测到出现异常工作人员闯入时开展时实警报,保证项目施工作业现场的安全性。
随着城市化的快速推进及人口流动的快速增加,传统社区治理在人员出入管控、安防巡逻、车辆停放管理等典型场景下都面临着人力不足、效率低下、响应不及时等诸多难题。而人工智能技术代替人力,实现人、车、事的精准治理,大幅降低人力、物质、时间等成本,以最低成本发挥最强大的管理效能,有效推动城市治理向更“数字化、自动化、智慧化”的方向演进。
图像处理领域中,最基本的技术是图像识别技术,现在应用最广泛也最成熟的就是人脸识别技术。无论在中国还是在美国,都有很多相关创业公司,其中不乏这种垂直领域的独角兽。
近日,警方通报了一起使用智能AI技术进行电信诈骗的案件。被骗者是福州市某科技公司法人代表郭先生,他通过微信视频接到自己好友的电话,对方佯装需要借用他公司账户走账,并通过智能AI换脸技术伪装成好友成功骗取了郭先生430万元。
[ 亿欧导读 ] 巨头纷纷布局,市场也吸引了越来越多的人才创业参与其中。计算机视觉正在成为人工智能最火热的细分领域之一。本报告将针对计算机视觉技术发展的关键节点、市场现状及应用场景进行分析和研究。 图
智能农业是一项通过整合现代信息技术,尤其是机器学习技术,以提高农业生产效率和质量的创新农业方式。本项目将重点关注机器学习在粮食产业中的应用,以优化种植、管理和收割等各个环节,提高粮食产业的整体效益。
孙庆凯表示,2018年,是正儿八经能够把技术真刀真枪拿出来比试好坏的一年。 2017年2月27日,国家发改委高技术司公示2017年“互联网+”人工智能基础资源公共服务平台承担项目名单,作为唯一的初创公司,云从与百度、腾讯、科大讯飞同为入选项目。而在今年1月初,云从科技再次入选国家发改委2018“人工智能”重大工程。 创始人出身中科院、接受中科院的投资、入选国家重大工程支持项目之一……在业内,云从已经是名副其实的“AI产业化国家队”。 看好行业前景和云从团队实力 他选择加入云从 “我加入云从不到一年时间,这
在人工智能领域大规模并行计算是一个刚性的需求,CPU由于本身设计更偏重于多任务处理、逻辑控制所以不太适合在矩阵计算这种需要高并行的场景中应用,这也给了像Nvidia、Xilinx等芯片公司在深度学习时代的爆发的机会。
AI 科技评论按:近期,图普科技在国际权威海量人脸识别数据库 MegaFace 中,以 99.087% 的最新成绩在百万级别人脸识别测试中拔得头筹,参加这项测试的还有来自 Google、微软中国、百度、腾讯等公司的 AI 团队。
深度学习是一种人工神经网络的应用,其应用范围包括自然语言处理、计算机视觉、语音识别等等。其中,卷积神经网络(Convolutional Neural Network,CNN)是一种应用广泛的图像识别模型,其用于解决计算机视觉领域中的图像分类、目标检测、图像分割等问题。本文将详细介绍卷积神经网络的原理、结构和应用。
图像相比文字能够提供更加生动、容易理解及更具艺术感的信息,是人们转递与交换信息的重要来源,也是图像识别领域的一个重要问题,图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题,也是图像检测、图像分割、物体跟踪、行为分析等其他高层视觉任务的基础。图像分类在很多领域有广泛应用,包括安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。一般来说,图像分类通过手工特征或特征学习方法对整个图像进行全部描述,然后使用分类器判别物体类别,因此如何提取图像的特征至关重要。但是如果靠自己实现一个图像识别算法是不容易的,我们可以使用ImageAI来完成这样一个艰巨的任务。
摘要: 2014年后,人工智能逐渐成为中国私募市场的“宠儿”,投资风口也逐渐形成。亿欧智库最新推出的《2018中国人工智能投资市场研究报告》中,挖掘了14个行业中最受追捧的细分领域。
本文主要介绍了一种基于Java和C++混合编程的图像识别服务框架的设计与实现,该框架可以同时支持多种图像识别算法,并提供了灵活的配置方式和容错机制,可广泛应用于各类业务场景。
“SkeyeIVMS+ SkeyeVSS”视频安防综合管理系统打造“工业联网数字化”智慧工厂
昨天IFAA联盟发布“本地人脸识别安全解决方案”,用来实现金融级别现金支付的技术,“像iPhone X那样去人脸支付吧!安卓终于再一次追平了苹果”,并总结出“攻克了几乎是行业性的四大难题”:
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。《白皮书》就保险行业人脸安全事件进行了详细分析,并阐述了保险行业的人脸安全应用实践。
导读:本文主要介绍了机器视觉的主要应用场景,目前绝大部分数字信息都是以图片或视频的形式存在的,若要对这些信息进行有效分析利用,则要依赖于机器视觉技术的发展,虽然目前已有的技术已经能够解决很多问题,但离解决所有问题还很遥远,因此机器视觉的应用前景还是非常广阔的。
领取专属 10元无门槛券
手把手带您无忧上云