首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像拼接——APAP算法[通俗易懂]

    *图像拼接是将同一场景的多个重叠图像拼接成较大的图像的一种方法,在医学成像、计算机视觉、卫星数据、军事目标自动识别等领域具有重要意义。图像拼接的输出是两个输入图像的并集。 *图像配准(image alignment)和图像融合是图像拼接的两个关键技术。图像配准是图像融合的基础,而且图像配准算法的计算量一般非常大,因此图像拼接技术的发展很大程度上取决于图像配准技术的创新。早期的图像配准技术主要采用点匹配法,这类方法速度慢、精度低,而且常常需要人工选取初始匹配点,无法适应大数据量图像的融合。图像拼接的方法很多,不同的算法步骤会有一定差异,但大致的过程是相同的。 *图像拼接通常用到五个步骤: 1、根据给定图像 / 集,实现特征匹配 2、通过匹配特征计算图像之间的变换结构 3、利用图像变换结构,实现图像映射 4、针对叠加后的图像,采用APAP之类的算法,对齐特征点 5、通过图割方法,自动选取拼接缝

    01

    FetReg2021——胎儿镜检查中胎盘血管的分割和配准

    胎儿镜激光光凝术是一种广泛用于治疗双胎输血综合征 (TTTS) 的手术。由于视野有限、胎儿镜的可操作性差、液体混浊和光源变化导致的可见度差以及胎盘位置异常,该手术特别具有挑战性。这可能会导致手术时间增加和消融不完全,从而导致持续的TTTS。计算机辅助干预可以通过视频镶嵌扩大胎儿镜视野并提供更好的血管图可视化,从而指导外科医生更好地定位异常吻合,从而帮助克服这些挑战。胎儿镜检查的视频拼接仍然是一个具有挑战性的问题,因为视觉质量差(即伪影、照明条件、漂浮的液体颗粒)、分辨率低、纹理缺乏、患者之间和患者内部的高变异性、术中环境的移动性和有限的视野。

    01

    apap图像全景拼接

    图像配准(apap)是将两张场景相关的图像进行映射,寻找其中的关系,多用在医学图像配准、图像拼接、不同摄像机的几何标定等方面,其研究也较为成熟。OpenCv中的stitching类就是使用了2007年的一篇论文(Automatic panoramic image stitching using invariant features)实现的。虽然图像配准已较为成熟,但其实其精度、鲁棒性等在某些场合仍不足够,如光线差异很大的两张图片、拍摄角度差异很大的图片等。2013年,Julio Zaragoza等人发表了一种新的图像配准算法Apap(As-Projective-As-Possible Image Stitching with Moving DLT),该算法的效果还是不错的,比opencv自带的auto-stitch效果要好。而2015年也有一篇cvpr是介绍图像配准(Non-rigid Registration of Images with Geometric and Photometric Deformation by Using Local Affine Fourier-Moment Matching),其效果貌似很牛,但没有源码,难以检验。

    03
    领券