工具是机器学习的重要组成部分,选择合适的工具与使用最好的算法同等重要。 在这篇文章中,你将会见识到各种机器学习工具。了解它们为什么重要,以及可供选择的工具类型。 为什么要使用工具 机器学习工具使得应用机器学习更快,更简单,更有趣。 更快:好工具可以自动化应用机器学习过程中的每一步。这意味着,从提出创意到得到结果的时间大大缩短。如果你从头开始自己实现每一个功能,这花的时间要比选择现有工具要长的多。 更简单:你可以花时间来选择合适的工具,而不是研究、实现技术来完成任务。如果你自己实现,你必须
机器学习领域的知识太多了,学习的工具包,命令、操作和公式都是数不胜数,让“新军”们理解记住太难了!所以,学生时代的一件利器派上用场了,那就是人见人爱的“小抄”,这可是个好东西。 比如说下面这些深度学习
比如说下面这些深度学习小抄,由GitHub用户kailashahirwar从各处搜集而来:
当涉及到训练计算机的行为而不需要明确的编程,存在大量的机器学习领域的工具。学术和工业界专业人士使用这些工具来构建从语音识别到MRI扫描中的癌症检测的许多应用。许多这些工具可以在网上免费获得。如果你有兴趣,我已经编译了这些(见本页底部)的排名,以及区分它们中一些重要功能的概述。具体来说,该工具所用的语言、每个工具的主页网站上的描述、对机器学习中特定范式的关注以及学术界和工业界的一些主要用途。
机器学习平台的最大的驱动力应该是面向数据科学家的基于 Python 的开源技术生态系统的蓬勃发展,比如 scikit-learn、XGBoost 和 Tensorflow/PyTorch 等等。也是因为有了这些算法库的存在,让大部分人都可以使用算法去完成自己的想法,而不需要知道艰深的数学知识,也不需要知道算法的具体实现。
机器学习从业者通常通过实验算法、数据和超参数来开发新的机器学习模型。随着实验和项目规模的不断扩大,特别是在大中型企业中,越来越多的模型需要进行有效管理,上图展示了在谷歌中人工智能相关的存储库正在呈指数级增长。机器学习从业者需要一种高效的方法来存储、检索和利用模型版本、超参数和性能指标等细节。
我们过去几年的调查表明,很多不同行业的机构对机器学习(ML)越来越感兴趣。有几个因素促成人们在产品和服务中运用机器学习。首先,机器学习社区已经在企业感兴趣的许多领域实现了研究的突破,并且大部分研究都通过预发表和专业会议演示进行了公布。我们也开始看到研究人员共享出在流行的开源框架中编写的示例代码,有些甚至共享出了预先训练好的模型。企业和机构现在还可以从更多的应用案例从中吸取灵感。非常有可能在你感兴趣的行业或领域里,你可以找到许多有趣的机器学习的应用并借鉴参考。最后,建模工具正在被改进和优化,同时自动化工具已经可以让新用户去解决那些曾经是需要专家才能解决的问题。
我将介绍5个“机器学习”的步骤,这五个步骤是非常规的。
随着机器学习技术的迅速发展,Python已成为了机器学习领域最受欢迎的编程语言之一。Python以其简单易用、灵活性和丰富的生态系统等优势,在机器学习领域得到了广泛应用。
【新智元导读】作者在本文提出一种5步入门并应用机器学习的方法。它不是传统的方法。传统的机器学习方法提倡从下往上学,先从理论和数学开始,然后是算法实现,最后让你去解决现实世界的问题。 作者提倡的掌握机器
“我是一名软件开发工程师,阅读过一些关于机器学习方面的书籍和博客文章,也学习过一些在线的关于机器学习的公开课。但是,我仍然不知道怎么应用到工程实践中……”
AI科技评论按:在过去的一年当中,自动化机器学习已经成为一个众人感兴趣的话题。KDnuggets举办了一个关于该话题的博客大赛。结果喜人,有很多有意思的想法与项目被提出来了。一些自动化学习工具也引起了大家的兴趣,受到了大家的追捧。 本篇文章的作者 Matthew Mayo 将会对自动化学习进行简单的介绍,探讨下一下它的合理性、采用情况,介绍下它现在使用的工具,讨论下它预期的未来发展方向。本文由AI科技评论编译,未经许可不得转载。 什么是自动化机器学习呢? 接下来我们要探讨的是自动化机器学习属于哪一类科学
机器学习是一项令人惊叹的技术。如果掌握了正确的使用方法,机器学习技术将势不可当。建造一个在很大程度上表现得像人类的机器,将是多么吸引人。精通机器学习工具有利于处理数据、训练模型、发现新方法并创建自己的算法。
我喜欢机器学习开源社区,作为一个有抱负且资深的数据科学家,我的大部分学习来自开源的资源和工具。
机器学习有大量的算法,往往很容易让人感到不知所措。也正因为有太多的选择,导致人们不知道应该从哪里开始和要怎么去做。
学习机器学习,但无从下手怎么办?尝试过各种学习方法,为什么依然是个门外汉?为什么传统的学习机器学习的途径收效甚慢? 作为一名对机器学习心有向往的程序员,我该以什么样的姿势开始呢? 如果你也有同样的困惑,这篇文章推荐给你。 我曾是一名想进入AI行业的软件开发者。为了更快熟悉这里边的门道,我阅读了机器学习的书籍,浏览了不少帖子,还学习了Coursera上关于机器学习的课程。 但是,但是,依然不知道如何开始…... 你是否也有这样的经历呢? 图片版权归Peter Alfred Hess所有 很多开发者都
一般来说,学习的过程通常意味着先犯错误以及选择错误的道路,然后再想明白如何在将来避免这些陷阱。机器学习也不例外。
大规模机器学习流程的构建与部署 现在有许多的机器学习算法实现是可以扩展到大数据集上的(其中包括矩阵分解、SVM、逻辑回归、LASSO 等等)。实际上,机器学习专家们很乐于指出的一点是:如果你能把机器学习问题转化为一个简单的数值优化问题,你就几近成功了。 当然,现实的问题是,很多机器学习项目是没法简化成一个简单的优化问题的。因此数据科学家们不得不去管理和维护复杂的数据项目,加之他们所要分析的问题经常也需要特定的机器学习流程。上游流程中每个阶段的决策影响下游流程的结果,因此流程中模块的连接与交互成为了一个研究的
本文由 伯乐在线 - XiaoxiaoLi 翻译自 Jason Brownlee 网址 http://machinelearningmastery.com/self-study-machine-learning-projects/ 学习机器学习有很多方法,大多数人选择从理论开始。 如果你是个程序员,那么你已经掌握了把问题拆分成相应组成部分及设计小项目原型的能力,这些能力能帮助你学习新的技术、类库和方法。这些对任何一个职业程序员来说都是重要的能力,现在它们也能用在初学机器学习上。 要想有效地学习机器学习你
因为机器学习研究的放缓,以及大家对产业化的需求。近来大家对MLOps的关注越来越高,特别是其中涉及到的各种各样的工具。
你肯定已经了解流行的开源工具,如R、Python、Jupyter笔记本等。但是,除了这些流行的工具之外还有一个世界——一个隐藏在机器学习工具下的地方。这些并不像他们的同行那样出色,但可以成为许多机器学习任务的救星。
机器学习是人工智能领域的一个重要分支,它通过建立数学模型,使计算机能够从数据中自动学习并进行预测和决策。H2OAutoML是一个开源的自动机器学习工具库,它旨在简化机器学习的使用和部署过程。本文将介绍H2OAutoML的基本概念和使用方法。
本文介绍了GitHub上最流行的20个Python机器学习项目,包括scikit-learn、Pylearn2、NuPIC等,并分析了这些项目的特点和贡献。
有想法有创意,想快速自行发起项目?还在海量的工具包、软件、平台、库和各种插件上毫无头绪地寻觅?想加入初创公司一展身手,却找不到补课切入点?
云计算机器学习平台,有时也被称为机器学习即服务(MLaaS)解决方案,可以让企业更加轻松地采用人工智能(AI)。但专家表示,中小企业在考虑采用这些服务之前应该考虑其面临的潜在挑战。 云计算机器学习平台
我们分析了GitHub上的前20名Python机器学习项目,发现scikit-Learn,PyLearn2和NuPic是贡献最积极的项目。让我们一起在Github上探索这些流行的项目! Scikit-learn:Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机森林,Gradient Boosting,聚类算法和DBSCAN。而且也设计出了Python numerical和scienti
原文:http://machinelearningmastery.com/machine-learning-for-programmers/ 译文:http://www.csdn.net/article/2015-08-27/2825551 (译者/刘帝伟 审校/刘翔宇、朱正贵 责编/周建丁) 关于译者: 刘帝伟,中南大学软件学院在读研究生,关注机器学习、数据挖掘及生物信息领域。 机器学习算法的传统学习路径,是从统计学、概率论、线性代数、微积分等多种数学知识开始,但专业程序员、机器学习爱好者、Mach
日前,微软 Ignite2017 大会正在美国佛罗里达州奥兰多举行,除了正式推出量子计算编程语言,对 Azure 云平台进行功能更新等,基于目前各大对手企业纷纷布局 AI,微软也全力加大对机器学习的相关研究,在大会上充分展示了与 AI 相关的研究、产品和方法。 在会议上,针对那些想要构建新的 AI 模型的开发者或想利用现有模型(不限于微软提供的模型)的普通用户,微软发布了一系列新的 AI 工具。 AI科技评论注意到,微软针对 AI 开发者发布了三个主要的新工具: Azure 机器学习实验服务 Azure 机
AI科技评论消息,日前,微软Ignite2017大会正在美国佛罗里达州奥兰多举行,除了正式推出量子计算编程语言,对Azure云平台进行功能更新等,基于目前各大对手企业纷纷布局AI,微软也全力加大对机器学习的相关研究,在大会上充分展示了与AI相关的研究、产品和方法。 在会议上,针对那些想要构建新的AI模型的开发者或想利用现有模型(不限于微软提供的模型)的普通用户,微软发布了一系列新的AI工具。 AI科技评论注意到,微软针对AI开发者发布了三个主要的新工具:Azure机器学习实验服务、Azure机器学习工作台和
【编者按】机器学习算法的传统学习路径,是从统计学、概率论、线性代数、微积分等多种数学知识开始,但专业程序员、机器学习爱好者、MachineLearningMastery.com网站大拿Jason Brownlee博士认为这种自下而上的方法停留在算法层面,没有考虑到软件开发和交付,不适合专业程序员,他在一篇文章中面向程序员介绍了一种有别于传统的机器学习入门攻略,让您能够简单、高效地实现从开发者到机器学习践行者的飞跃。CSDN将其节选翻译,包括传统学习方法为什么失灵,如何使用现代的方式和“单项最优”的工具与平台
学习机器学习有很多方法,大多数人选择从理论开始。 如果你是个程序员,那么你已经掌握了把问题拆分成相应组成部分及设计小项目原型的能力,这些能力能帮助你学习新的技术、类库和方法。这些对任何一个职业程序员来说都是重要的能力,现在它们也能用在初学机器学习上。 要想有效地学习机器学习你必须学习相关理论,但是你可以利用你的兴趣及对知识的渴望,来激励你从实际例子学起,然后再步入对算法的数学理解。 通过本文你可以学习到程序员初学机器学习的四种方式。这是给技术人员设计的实用方法,并以实验为依据,你需要做调研并且完成实验才能
机器学习算法的传统学习路径,是从统计学、概率论、线性代数、微积分等多种数学知识开始,但专业程序员、机器学习爱好者、MachineLearningMastery.com网站大拿Jason Brownlee博士认为这种自下而上的方法停留在算法层面,没有考虑到软件开发和交付,不适合专业程序员,他在一篇文章中面向程序员介绍了一种有别于传统的机器学习入门攻略,让您能够简单、高效地实现从开发者到机器学习践行者的飞跃。CSDN将其节选翻译,包括传统学习方法为什么失灵,如何使用现代的方式和“单项最优”的工具与平台来处理实际
【导读】2017年9月,Uber 在技术社区发表了一篇文章向大家介绍了 Uber 的机器学习平台 —— Michelangelo。随着平台的日渐成熟,Uber 的业务数量与能力也随之增长和提升,机器学习在整个公司的应用范围越来越广。在本篇文章中, 我们将为大家总结 Michelangelo 在过去一年的时间里取得的成果,回顾Michelangelo 的发展历程,并深入探讨 Uber 机器学习平台当前的发展方向和未来目标。
摘要: 开源是技术创新和快速发展的核心。这篇文章向你展示Python机器学习开源项目以及在分析过程中发现的非常有趣的见解和趋势。 我们分析了GitHub上的前20名Python机器学习项目,发现scikit-Learn,PyLearn2和NuPic是贡献最积极的项目。让我们一起在Github上探索这些流行的项目! Scikit-learn:Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随
近年来,机器学习无论是作为学术研究领域还是实际商业问题的解决方案,都受到了越来越多的关注。然而,就像其他领域一样,在学术环境中起作用的研究和实际系统的要求之间往往存在着显著差异,所以在生产系统中部署机器学习模型可能会带来许多问题。
是什么将“统计”从“机器学习”中分离出来的?个被讨论过无数次的问题。关于这个问题的文章有很多,人们对其好坏莫衷一是。但是我发现,在“统计”和“机器学习”的争论上,人们往往会“只见森林,不见树木”。 A
导读:随着人工智能技术的发展与普及,Python超越了许多其他编程语言,成为了机器学习领域中最热门最常用的编程语言之一。有许多原因致使Python在众多开发者中如此受追捧,其中之一便是其拥有大量的与机器学习相关的开源框架以及工具库。
本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。Weka包括一系列的工具,如数据预处理、分类、回归、聚类、关联规则以及可视化。 2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区。它包括一系列的机器学习算法(分类、回归、聚类、异常检测、概念漂移检测和推荐系统)和评估工具。关联了WEKA项目,MOA也是用Java编写的,其扩展性更强。
人工智能和机器学习正在取代大多数人类交互。目前,我们有聊天机器人和人工智能小助手的例子。但是,人工智能和机器学习的使用增加了人际互动的需求,而不是减少了它。大家在与机器打交道后,往往会感到不满足,渴望与人互动。人类互动的减少和机器人通信的增加也导致了许多社会和心理问题。
【新智元导读】作为一名开发者,怎么才能加入时下正火热的机器学习?本文作者Jason认为,传统的方法,包括从经典图书、博客文章或线上课程进行学习成效不大,甚至“错得离谱”。最好的方法其实是动手,不要停留在理论层面,动手实践才能高效的学习。在文章中,作者给出了自己的建议,特别强调机器学习实践过程中的细节,此外,他还推荐了一些可用的机器学习训练平台及数据库。 这篇文章要回答的问题是“我该如何开始机器学习”? “我是一个开发者。我读了一些关于机器学习的文章和书,也在Coursera上学习了机器学习课程。但我仍不知道
我们很多人都没有注意到,其实 YouTube 上面有大量免费的机器学习的指导课程。你无须再等待 MOOC 课程的更新了,可以在 YouTube 上面找到你想要的。去年,我们在 Top YouTube Videos 里面推荐了大量神经网络、深度学习和机器学习方面的优秀视频,但是很多视频已经有些过时了,所以这里我们需要更新一下视频推荐。 (备注:请自备梯子科学上网观看) 本文可以帮助你发现新的工具、技术、方法等。你要牢记这句话:对新知识的学习要像生命对于活水的需求一样迫切,永远不要停下追赶新知识、新观点的脚步。
是什么将“统计”从“机器学习”中分离出来的? 这是一个被讨论过无数次的问题。关于这个问题的文章有很多,人们对其好坏莫衷一是。但是我发现,在“统计”和“机器学习”的争论上,人们往往会“只见森林,不见树木
本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。Weka包括一系列的工具,如数据预处理、分类、回归、聚类、关联规则以及可视化。 2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区。它包括一系列的机器学习算法(分类、回归、聚类、异常检测、概念漂移检测和推荐系统)和评估工具。关联了WEKA项目,MOA也是用Java编写的,其扩展
目前,当企业想用机器学习解决问题时,他们往往需要一个团队。即使是一个非常简单的问题,也需要多位数据科学家、机器学习专家以及领域专家共同商定优先事项并交换数据和信息。 这个过程往往效率低下,需要数月时间才能获得结果。并且这也只能解决当下的问题。下一次再出现问题时,企业必须重复上述过程。 麻省理工学院(MIT)的一群研究人员想知道,“如果我们尝试另一种策略会怎么样?如果我们创建自动化工具,让主题专家能够使用机器学习自己解决这些问题呢?” 过去五年,MIT信息与决策系统实验室首席研究科学家Kalyan Vee
Github上的十大机器学习项目涵盖了一系列函数库、框架和教学资源。我们来看看别人使用的工具和学习的资源。 开源软件是数据科学很重要的一部分。 根据最近的KDnuggets数据科学软件投票的结果,73
领取专属 10元无门槛券
手把手带您无忧上云