首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    模型运营是做什么的(概念模型数据库)

    我们过去几年的调查表明,很多不同行业的机构对机器学习(ML)越来越感兴趣。有几个因素促成人们在产品和服务中运用机器学习。首先,机器学习社区已经在企业感兴趣的许多领域实现了研究的突破,并且大部分研究都通过预发表和专业会议演示进行了公布。我们也开始看到研究人员共享出在流行的开源框架中编写的示例代码,有些甚至共享出了预先训练好的模型。企业和机构现在还可以从更多的应用案例从中吸取灵感。非常有可能在你感兴趣的行业或领域里,你可以找到许多有趣的机器学习的应用并借鉴参考。最后,建模工具正在被改进和优化,同时自动化工具已经可以让新用户去解决那些曾经是需要专家才能解决的问题。

    03

    【大规模机器学习】大规模机器学习流程的构建与部署

    大规模机器学习流程的构建与部署 现在有许多的机器学习算法实现是可以扩展到大数据集上的(其中包括矩阵分解、SVM、逻辑回归、LASSO 等等)。实际上,机器学习专家们很乐于指出的一点是:如果你能把机器学习问题转化为一个简单的数值优化问题,你就几近成功了。 当然,现实的问题是,很多机器学习项目是没法简化成一个简单的优化问题的。因此数据科学家们不得不去管理和维护复杂的数据项目,加之他们所要分析的问题经常也需要特定的机器学习流程。上游流程中每个阶段的决策影响下游流程的结果,因此流程中模块的连接与交互成为了一个研究的

    010

    程序猿:这四种方式开启机器学习之路

    学习机器学习有很多方法,大多数人选择从理论开始。 如果你是个程序员,那么你已经掌握了把问题拆分成相应组成部分及设计小项目原型的能力,这些能力能帮助你学习新的技术、类库和方法。这些对任何一个职业程序员来说都是重要的能力,现在它们也能用在初学机器学习上。 要想有效地学习机器学习你必须学习相关理论,但是你可以利用你的兴趣及对知识的渴望,来激励你从实际例子学起,然后再步入对算法的数学理解。 通过本文你可以学习到程序员初学机器学习的四种方式。这是给技术人员设计的实用方法,并以实验为依据,你需要做调研并且完成实验才能

    07

    【干货】开发者如何掌握机器学习?传统方法可能都走了弯路

    【新智元导读】作为一名开发者,怎么才能加入时下正火热的机器学习?本文作者Jason认为,传统的方法,包括从经典图书、博客文章或线上课程进行学习成效不大,甚至“错得离谱”。最好的方法其实是动手,不要停留在理论层面,动手实践才能高效的学习。在文章中,作者给出了自己的建议,特别强调机器学习实践过程中的细节,此外,他还推荐了一些可用的机器学习训练平台及数据库。 这篇文章要回答的问题是“我该如何开始机器学习”? “我是一个开发者。我读了一些关于机器学习的文章和书,也在Coursera上学习了机器学习课程。但我仍不知道

    016
    领券