首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    粒子群优化算法python程序_粒子群算法的具体应用

    粒子群优化算法(Particle Swarm Optimization, PSO)作为进化计算的一个分支,是由Eberhart和Kennedy于1995年提出的一种全局搜索算法,同时它也是一种模拟自然界的生物活动以及群体智能的随即搜索算法。 粒子群优化算法起源于鸟群觅食的过程,一个核心机制是每只小鸟各自觅食,并记住一个离食物最近的位置,通过和其他的小鸟交流,得到整个鸟群已知的最佳位置,引导鸟群朝着这个方向继续搜索。 还有两个关键设置:粒子历史最优位置(pBest向量)、群体历史最优位置(gBest向量)。 这里pBest向量是一组向量,它包含了每个粒子的历史最优位置,gBest向量为pBest向量中适应值最高的向量,即全局最优。 说明:算法中一般取要优化的目标函数作为适应值函数,评估适应值的大小,然后更新pBest向量和gBest向量。

    02

    粒子群优化(PSO)算法概述

    PSO(PSO——Particle Swarm Optimization)(基于种群的随机优化技术算法) 粒子群算法模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断改变其搜索模式。 Kennedy和Eberhart提出粒子群算法的主要设计思想与两个方面的研究密切相关: 一是进化算法,粒子群算法和进化算法一样采用种群的方式进行搜索,这使得它可以同时搜索待优化目标函数解空间中的较多区域。 二是人工生命,即研究具有生命特征的人工系统,它采用的主要工具是计算机,主要方法是利用计算机编程模拟。 Millonas在用人工生命理论来研究群居动物的行为时,对于如何采用计算机构建具有合作行为的群集人工生命系统,提出了五条基本原则: (1)邻近原则(ProximityPrinciple):群体应该能够执行简单的空间和时间运算。 (2)质量原则(Quality Principle):群体应该能感受到周围环境中质量因素的变化,并对其产生响应。 (3)反应多样性原则(Principle ofDiverse Response):群体不应将自己获取资源的途径限制在狭窄的范围之内。 (4)稳定性原则(Principle ofStability):群体不应随着环境的每一次变化而改变自己的行为模式。 (5)适应性原则(Principle ofAdaptability):当改变行为模式带来的回报是值得的时候,群体应该改变其行为模式。 其中4、5两条原则是同一个问题的两面。微粒群系统满足以上五条原则。 近十余年来,针对粒子群算法展开的研究很多,前国内外已有多人从多个方面对微粒群算法进行过综述;并出现了多本关于粒子群算法的专著和以粒子群算法为主要研究内容的博士论文。

    03

    基于粒子群优化算法的函数寻优算法研究_matlab粒子群优化算法

    粒子群算法(particle swarm optimization,PSO)是计算智能领域一种群体智能的优化算法。该算法最早由Kennedy和Eberhart在1995年提出的。PSO算法源于对鸟类捕食行为的研究,鸟类捕食时,找到食物最简单有效的策略就是搜寻当前距离食物最近的鸟的周围区域。PSO算法就是从这种生物种群行为特征中得到启发并用于求解优化问题的,算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值。粒子的速度决定了粒子移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优。 假设在一个 D D D维的搜索空间中,由 n n n个粒子组成的种群 X = ( X 1 , X 2 , ⋯   , X n ) \boldsymbol{X}=(X_1,X_2,\dotsm,X_n) X=(X1​,X2​,⋯,Xn​),其中第 i i i个粒子表示为一个 D D D维的向量 X i = ( X i 1 , X i 2 , ⋯   , X i D ) T \boldsymbol{X_i}=(X_{i1},X_{i2},\dotsm,X_{iD})^T Xi​=(Xi1​,Xi2​,⋯,XiD​)T,代表第 i i i个粒子在 D D D维搜索空间中的位置,亦代表问题的一个潜在解。根据目标函数即可计算出每个粒子位置 X i \boldsymbol{X_i} Xi​对应的适应度值。第 i i i个粒子的速度为 V = ( V i 1 , V i 2 , ⋯   , V i D ) T \boldsymbol{V}=(V_{i1},V_{i2},\dotsm,V_{iD})^T V=(Vi1​,Vi2​,⋯,ViD​)T,其个体最优极值为 P i = ( P i 1 , P i 2 , ⋯   , P i D ) T \boldsymbol{P_i}=(P_{i1},P_{i2},\dotsm,P_{iD})^T Pi​=(Pi1​,Pi2​,⋯,PiD​)T,种群的群体最优极值为 P g = ( P g 1 , P g 2 , ⋯   , P g D ) T \boldsymbol{P_g}=(P_{g1},P_{g2},\dotsm,P_{gD})^T Pg​=(Pg1​,Pg2​,⋯,PgD​)T。 在每次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,即 V i d k + 1 = ω V i d k + c 1 r 1 ( P i d k − X i d k ) + c 2 r 2 ( P g d k − X i d k ) (1) V_{id}^{k+1}=\omega V_{id}^k+c_1r_1(P_{id}^k-X_{id}^k)+c_2r_2(P_{gd}^k-X_{id}^k)\tag{1} Vidk+1​=ωVidk​+c1​r1​(Pidk​−Xidk​)+c2​r2​(Pgdk​−Xidk​)(1) X i d k + 1 = X i d k + V k + 1 i d (2) X_{id}^{k+1}=X_{id}^k+V_{k+1_{id}}\tag {2} Xidk+1​=Xidk​+Vk+1id​​(2)其中, ω \omega ω为惯性权重; d = 1 , 2 , ⋯   , n d=1,2,\dotsm,n d=1,2,⋯,n; k k k为当前迭代次数; V i d V_{id} Vid​为粒子的速度; c 1 c_1 c1​和 c 2 c_2 c2​是非负的常数,称为加速度因子; r 1 r_1 r1​和 r 2 r_2 r2​是分布于 [ 0 , 1 ] [0,1] [0,1]区间的随机数。为防止粒子的盲目搜索,一般建议将其位置和速度限制在一定的区间 [ − X m a x , X m a x ] [-X_{max},X_{max}] [−Xmax​,Xmax​]、 [ − V m a x , V m a x ] [-V_{max},V_{max}] [−Vmax​,Vmax​]。

    03
    领券