VAE变分自编码器方法是优雅的,理论上令人愉快的,并且易于实现。它也获得了出色的结果,是生成式建模中的最先进方法之一。变分自编码器的一个非常好的特性是,同时训练参数编码器与生成器网络的组合迫使模型学习编码器可以捕获可预测的坐标系。这使得它成为一个优秀的流形学习算法。
深度学习算法(第30期)----降噪自编码器和稀疏自编码器及其实现 今天我们一起学一下变分自编码器及其实现方面的知识。
原文标题:Understanding Variational Autoencoders (VAEs)
【导读】自编码器是一种非常直观的无监督神经网络方法,由编码器和解码器两部分构成,自编码器近年来很受研究人员的欢迎。本文是机器学习工程师Jeremy撰写的一篇非常棒的博文,介绍了变分自编码器理论基础和工作原理,通过人脸示例帮助读者更直观的理解。本文强调了变分自编码器的理论推导和实现细节,在文末展示了变分自编码器作为生成模型的输出结果。希望深入理解变分自编码器的读者不妨读一读。 Variational autoencoders 变分自编码器 自编码器是发现数据的一些隐状态(不完整,稀疏,去噪,收缩)表示的模型
深度学习中的自编码器。图源:https://debuggercafe.com/autoencoders-in-deep-learning/
AiTechYun 编辑:yuxiangyu 在上一篇介绍自编码器文章中,我们讨论了将数据作为输入并发现数据的一些潜在状态表示的模型(欠完备,稀疏,降噪,压缩)。也就是说,我们的输入数据被转换成一个编码向量,其中每个维度表示一些学到的关于数据的属性。在这里,最重要的细节是我们的编码器网络为每个编码维度输出单个值,而解码器网络随后接收这些值并尝试重构原始输入。 变分自编码器(VAE)以概率的方式描述潜在空间观察。因此,我们不会构建一个输出单个值来描述每个潜在状态属性的编码器,而是用编码器来描述每个潜在属性的概
生成模型一直是机器学习和计算机视觉领域的重要研究方向。以生成对抗网络(GANs)和变分自编码器(VAEs)等为代表的深度生成模型已经成为当前人工智能研究的热点问题和重要前沿方向。目前的各种深度生成模型都各有其优点和缺点,比如生成对抗网络的训练稳定性和模式崩溃(mode collapse)问题等,变分自编码器生成图像比较模糊等。针对这些问题,我们提出了一种新的生成模型——自省变分自编码器,用于实现稳定训练和生成高分辨率真实图像。
今天学习的是 Thomas N. Kipf 的 2016 年的工作《Variational Graph Auto-Encoders》,目前引用量为 260 多。
说到计算机生成的图像肯定就会想到deep fake:将马变成的斑马或者生成一个不存在的猫。在图像生成方面GAN似乎成为了主流,但是尽管这些模型在生成逼真的图像方面取得了巨大成功,但他们的缺陷也是十分明显的,而且并不是生成图像的全部。自编码器(autoencoder)作为生成的图像的传统模型还没有过时并且还在发展,所以不要忘掉自编码器!
神经网络从根本上是有监督的——它们接受一组输入,执行一系列复杂的矩阵操作,并返回一组输出。随着世界产生越来越多的无监督数据,简单和标准的无监督算法已经不够用了。我们需要以某种方式将神经网络的深层力量应用于无监督的数据。
先将高维的原始数据映射到一个低维特征空间,然后从低维特征学习重建原始的数据。一个AE模型包含两部分网络:
传统的自动编码器是一种数据的压缩算法 其算法包括编码阶段和解码阶段,且拥有对称的结构。
AI 科技评论按:如今,说到图像领域的生成式模型,大家往往会想到对抗生成网络(GAN)和自编码器(AE)。本文介绍了斯坦福 AI 研究院的研究人员如何从统计压缩感知技术中汲取灵感设计出的非确定性自编码器(该编码器在自编码器的潜在空间中对不确定性进行建模),并巧妙地使用变分技术为其设计目标函数,相较于传统方法,该模型的性能有巨大的提升。斯坦福 AI 研究院将这一成果进行了介绍,AI 科技评论编译如下。
本次课将首先介绍生成模型的概念以及适用场景。进一步讲解基于能量的模型,包括受限玻尔兹曼机(RBM)和深度玻尔兹曼机等。它们既是早期的神经网络模型,也是经典的生成模型。接着介绍目前常见的深度生成模型,包括自编码器和变分自编码器。最后,介绍生成对抗网络(GAN)及其变种。
2024年2月26日,英国剑桥大学Pietro Lio教授团队,联合瑞典阿斯利康,在Nature Communications上发表文章Transfer learning with graph neural networks for improved molecular property prediction in the multi-fidelity setting。
机器之心专栏 机器之心编辑部 日本北海道大学提出 Gromov-Wasserstein Autoencoders(GWAE),将变分自编码器 Variational Autoencoder (VAE) 重写为数据和表示之间的最优传输的灵活表征学习框架。 学习高维数据的低维表示是无监督学习中的基本任务,因为这种表示简明地捕捉了数据的本质,并且使得执行以低维输入为基础的下游任务成为可能。变分自编码器(VAE)是一种重要的表示学习方法,然而由于其目标控制表示学习仍然是一个具有挑战性的任务。虽然 VAE 的证据下界
【导读】本文是工程师Irhum Shafkat的一篇博文,主要梳理了变分自编码器的相关知识。我们知道,变分自编码器是一种生成模型,在文本生成、图像风格迁移等诸多任务中有显著的效果,那么什么是变分自编码
简单来讲,变分自编码器是可以和GAN相媲美的生成网络。我们可以输入一个低维空间的Z,映射到高维空间的真实数据。比如,生成不同样的数字,人脸等等。
(第二部分:深度学习) 第10章 使用Keras搭建人工神经网络 第11章 训练深度神经网络 第12章 使用TensorFlow自定义模型并训练 第13章 使用TensorFlow加载和预处理数据 第14章 使用卷积神经网络实现深度计算机视觉 第15章 使用RNN和CNN处理序列 第16章 使用RNN和注意力机制进行自然语言处理 第17章 使用自编码器和GAN做表征学习和生成式学习 [第18章 强化学习] [第19章 规模化训练和部署TensorFlow模型]
无监督学习的目标之一是不依靠显式的标注得到数据集的内在结构。自编码器是一种用于达成该目标的常见结构,它学习如何将数据点映射到隐编码中——利用它以最小的信息损失来恢复数据。通常情况下,隐编码的维度小于数据的维度,这表明自编码器可以实施某种降维。对于某些特定的结构,隐编码可以揭示数据集产生差异的关键因素,这使得这些模型能够用于表征学习 [7,15]。过去,它们还被用于预训练其它网络:先在无标注的数据上训练它们,之后将它们叠加起来初始化深层网络 [1,41]。最近的研究表明,通过对隐藏空间施加先验能使自编码器用于概率建模或生成模型建模 [18,25,31]。
自编码器(AE)及其变体被广泛用于无监督学习 [74],它适用于学习没有监督信息的图节点表示。 在本节中,我们将首先介绍图自编码器,然后转向图变分自编码器和其他改进。表 4 总结了所调查的 GAE 的主要特征。
选自Medium 作者:Wuga 机器之心编译 参与:Geek Ai、李泽南 变分自编码器(VAE)与生成对抗网络(GAN)经常被相互比较,其中前者在图像生成上的应用范围远窄于后者。VAE 是不是只能
最近在学习生成模型的相关知识,这篇文章将介绍一下变分自编码器(Variational Auto-encoder),本文只介绍一些粗浅内容,不会涉及比较深刻的问题。
自编码器是能够在无监督的情况下学习输入数据的有效表示(叫做编码)的人工神经网络(即,训练集是未标记)。这些编码通常具有比输入数据低得多的维度,使得自编码器对降维有用(参见第 8 章)。更重要的是,自编码器可以作为强大的特征检测器,它们可以用于无监督的深度神经网络预训练(正如我们在第 11 章中讨论过的)。最后,他们能够随机生成与训练数据非常相似的新数据;这被称为生成模型。例如,您可以在脸部图片上训练自编码器,然后可以生成新脸部。
来源:机器学习算法与Python实战 本文约1200字,建议阅读5分钟 本文对现有的深度聚类算法进行全面综述与总结。 这篇博客对现有的深度聚类算法进行全面综述与总结。现有的深度聚类算法大都由聚类损失与网络损失两部分构成,博客从两个视角总结现有的深度聚类算法,即聚类模型与神经网络模型。 1. 什么是深度聚类? 经典聚类即数据通过各种表示学习技术以矢量化形式表示为特征。随着数据变得越来越复杂和复杂,浅层(传统)聚类方法已经无法处理高维数据类型。为了解决改问题,深度聚类的概念被提出,即联合优化表示学习和聚类。
本文介绍的是2023年7月发表在国际知名期刊《Nature Machine Intelligence》上发表的一篇题为《Application of variational graph encoders as an effective generalist algorithm in computer-aided drug design》的研究论文。该论文提出了一种单一的通用模型,利用图卷积变分编码器,可以同时预测小分子的多个属性,如吸收、体内分布、代谢、排泄和毒性、特定靶点的对接打分预测以及药物间的相互作用。使用这种方法可以实现具有高达两个数量级的显著加速优势的最先进虚拟筛选。通过图变分编码器的隐空间最小化,还可以加速开发具有帕累托最优(Pareto optimality)原则的特定药物,并具有可解释性的优势。本文的通讯作者是慕宇光教授(新加坡南洋理工)、郑良振博士(智峪生科和深圳先进院)和李伟峰教授(山东大学)。
选自Medium 机器之心编译 参与:Nurhachu Null、蒋思源 本文详细介绍了如何使用 TensorFlow 实现变分自编码器(VAE)模型,并通过简单的手写数字生成案例一步步引导读者实现这一强大的生成模型。 全部 VAE 代码:https://github.com/FelixMohr/Deep-learning-with-Python/blob/master/VAE.ipynb 自编码器是一种能够用来学习对输入数据高效编码的神经网络。若给定一些输入,神经网络首先会使用一系列的变换来将数据映射到低
来源:机器之心 本文长度为1876字,建议阅读4分钟 本文介绍了如何使用 TensorFlow 实现变分自编码器(VAE)模型,并通过简单的手写数字生成案例一步步引导读者实现这一强大的生成模型。 自编码器是一种能够用来学习对输入数据高效编码的神经网络。若给定一些输入,神经网络首先会使用一系列的变换来将数据映射到低维空间,这部分神经网络就被称为编码器。 然后,网络会使用被编码的低维数据去尝试重建输入,这部分网络称之为解码器。我们可以使用编码器将数据压缩为神经网络可以理解的类型。然而自编码器很少用做这个目的
在生化领域,药物分子化合物、蛋白质等经常被作为研究对象。以分子为例,它是一个天然的图结构,可以将分子中的原子看作节点,将化学键看作边,研究分子的化学性质就可以看成给一个图分类或者回归问题。事实上,在机器学习图分类问题的标准数据集中,生化分子占据了非常大的比例:对于化合物来说,MUTAG 数据集旨在分类它们是否为芳香剂,Tox21 数据集分类不同的毒性,NCI-1 分类对癌症的阻碍作用。对于这类问题,我们一般通过学习整个分子图的表示得到所谓的“分子指纹”,然后用它做各种性质的预测。
本篇介绍了深度神经网络表示学习+聚类的方法(深度聚类)综述,有帮助的话,文末点个赞吧~
在深度学习中,变分自编码器(Variational Autoencoder,VAE)是一种有效的无监督学习算法,主要用于学习输入数据的潜在表示。VAE通过最大化数据似然函数来学习隐含特征,使用重参数化技巧来优化似然函数,从而解决传统自编码器中存在的问题。本文将详细介绍重参数化技巧在VAE中的应用,并展示其实践效果。
编译 | AI科技大本营(rgznai100) 参与 | 史天,胡永波,鸽子 我的天啊,这些少年们,让身为多年程序猿,却还在吃草的我们,情何以堪,情何以堪...AI哥也只剩下最后一点自信了,那就是..
本文详细介绍了如何使用 TensorFlow 实现变分自编码器(VAE)模型,并通过简单的手写数字生成案例一步步引导读者实现这一强大的生成模型。 全部 VAE 代码:https://github.com/FelixMohr/Deep-learning-with-Python/blob/master/VAE.ipynb 自编码器是一种能够用来学习对输入数据高效编码的神经网络。若给定一些输入,神经网络首先会使用一系列的变换来将数据映射到低维空间,这部分神经网络就被称为编码器。 然后,网络会使用被编码的低维数据去
本文讲解了变分自编码器(VAE)的原理、优点和缺点。变分自编码器是一种无监督学习方法,用于从数据中学习表示。它通过学习数据的概率分布来实现,使得重构误差最小化。VAE的优点包括能够生成高质量的图像、图像生成和图像去噪。缺点包括其倾向于生成模糊图像,以及需要手动调整超参数。
Geoffrey Hinton 是谷歌副总裁、工程研究员,也是 Vector Institute 的首席科学顾问、多伦多大学 Emeritus 荣誉教授。2018 年,他与 Yoshua Bengio、Yann LeCun 因对深度学习领域做出的巨大贡献而共同获得图灵奖。
自编码器(Autoencoder, AE)是一种数据的压缩算法,其中压缩和解压缩函数是数据相关的、有损的、从样本中自动学习的。自编码器通常用于学习高效的编码,在神经网络的形式下,自编码器可以用于降维和特征学习。
本篇文章可作为<利用变分自编码器实现深度换脸(DeepFake)>(稍后放出)的知识铺垫。
三层网络结构:输入层,编码层(隐藏层),解码层。 训练结束后,网络可由两部分组成:1)输入层和中间层,用这个网络对信号进行压缩;2)中间层和输出层,用这个网络对压缩的信号进行还原。图像匹配就可以分别使用,首先将图片库使用第一部分网络得到降维后的向量,再讲自己的图片降维后与库向量进行匹配,找出向量距离最近的一张或几张图片,直接输出或还原为原图像再匹配。 该网络的目的是重构其输入,使其隐藏层学习到该输入的良好表征。其学习函数为 h(x)≈x h ( x ) ≈ x h(x) \approx x。但如果输入完全等于输出,即 g(f(x))=x g ( f ( x ) ) = x g(f(x)) = x,该网络毫无意义。所以需要向自编码器强加一些约束,使它只能近似地复制。这些约束强制模型考虑输入数据的哪些部分需要被优先复制,因此它往往能学习到数据的有用特性。一般情况下,我们并不关心AE的输出是什么(毕竟与输入基本相等),我们所关注的是encoder,即编码器生成的东西,在训练之后,encoded可以认为已经承载了输入的主要内容。 自动编码器属于神经网络家族,但它们与PCA(主成分分析)紧密相关。尽管自动编码器与PCA很相似,但自动编码器比PCA灵活得多。在编码过程中,自动编码器既能表征线性变换,也能表征非线性变换;而PCA只能执行线性变换。
选自Paperspace Blog 作者:Felipe 机器之心编译 参与:Jane W、黄小天 「大多数人类和动物学习是无监督学习。如果智能是一块蛋糕,无监督学习是蛋糕的坯子,有监督学习是蛋糕上的糖衣,而强化学习则是蛋糕上的樱桃。我们知道如何做糖衣和樱桃,但我们不知道如何做蛋糕。」 Facebook 人工智能研究部门负责人 Yann LeCun 教授在讲话中多次提及这一类比。对于无监督学习,他引用了「机器对环境进行建模、预测可能的未来、并通过观察和行动来了解世界如何运作的能力」。 深度生成模型(deep
选自GitHub 机器之心编译 参与:路雪、李泽南 变分自编码器(VAE)与生成对抗网络(GAN)是复杂分布上无监督学习最具前景的两类方法。本文中,作者在 MNIST 上对这两类生成模型的性能进行了对比测试。 项目链接:https://github.com/kvmanohar22/Generative-Models 本项目总结了使用变分自编码器(Variational Autoencode,VAE)和生成对抗网络(GAN)对给定数据分布进行建模,并且对比了这些模型的性能。你可能会问:我们已经有了数百万张图像
第15章 自编码器 来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目 译者:@akonwang 校对:@飞龙 自编码器是能够在无监督的情况下学习输入数据(叫做编码)的人工神经网络(即,训练集是未标记)。这些编码通常具有比输入数据低得多的维度,使得自编码器对降维有用(参见第 8 章)。更重要的是,自编码器可以作为强大的特征检测器,它们可以用于无监督的深度神经网络预训练(正如我们在第 11 章中讨论过的)。最后,他们能够随机生成与训练数据非常相似的新数据;这
最近AI圈内乃至整个科技圈最爆的新闻莫过于OpenAI的Sora了,感觉热度甚至远超之前ChatGPT发布时的热度。OpenAI也是放出了Sora的技术报告(有一定的信息量,也留下了大量的想象空间)。
来源:机器之心 本文长度为3071字,建议阅读6分钟 本文在 MNIST 上对VAE和GAN这两类生成模型的性能进行了对比测试。 项目链接:https://github.com/kvmanohar22/ Generative-Models 变分自编码器(VAE)与生成对抗网络(GAN)是复杂分布上无监督学习最具前景的两类方法。 本项目总结了使用变分自编码器(Variational Autoencode,VAE)和生成对抗网络(GAN)对给定数据分布进行建模,并且对比了这些模型的性能。你可能会问:我们已经
CHALLENGE ON LEARNED IMAGE COMPRESSION 挑战赛由 Google、Twitter、Amazon 等公司联合赞助,是第一个由计算机视觉领域的会议发起的图像压缩挑战赛,旨在将神经网络、深度学习等一些新的方式引入到图像压缩领域。据 CVPR 大会官方介绍,此次挑战赛分别从 PSNR 和主观评价两个方面去评估参赛团队的表现。
文中的链接请点击网址:http://yerevann.com/a-guide-to-deep-learning/ 预备知识 你必须有大学数学知识。你可以在深度学习这本书的前几章中回顾这些概念: 深度学
有这么一份干货,汇集了机器学习架构和模型的经典知识点,还有各种TensorFlow和PyTorch的Jupyter Notebook笔记资源,地址都在,无需等待即可取用。
生成模型是机器学习中一个有趣的领域,在这个领域中,网络学习数据分布,然后生成新的内容,而不是对数据进行分类。生成建模最常用的两种方法是生成对抗网络(GAN)和可变自编码器(VAE)。在这篇文章中,我将尝试解释可变自动编码器(VAE)背后的原理,以及它是如何生成上述面的数据的。
变分自编码器 (VAE) 是在图像数据应用中被提出,但VAE不仅可以应用在图像中。在这篇文章中,我们将简单介绍什么是VAE,以及解释“为什么”变分自编码器是可以应用在数值类型的数据上,最后使用Numerai数据集展示“如何”训练它。
领取专属 10元无门槛券
手把手带您无忧上云