首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    视觉无损的深度学习前处理算法

    在过去几十年中,视频压缩领域取得了许多进展,包括传统的视频编解码器和基于深度学习的视频编解码器。然而,很少有研究专注于使用前处理技术来提高码率-失真性能。在本文中,我们提出了一种码率-感知优化的前处理(RPP)方法。我们首先引入了一种自适应离散余弦变换损失函数,它可以节省比特率并保持必要的高频分量。此外,我们还将低级视觉领域的几种最新技术结合到我们的方法中,例如高阶退化模型、高效轻量级网络设计和图像质量评估模型。通过共同使用这些强大的技术,我们的RPP方法可以作用于AVC、HEVC和VVC等不同视频编码器,与这些传统编码器相比,平均节省16.27%的码率。在部署阶段,我们的RPP方法非常简单高效,不需要对视频编码、流媒体和解码的设置进行任何更改。每个输入帧在进入视频编码器之前只需经过一次RPP处理。此外,在我们的主观视觉质量测试中,87%的用户认为使用RPP的视频比仅使用编解码器进行压缩的视频更好或相等,而这些使用RPP的视频平均节省了约12%的比特率。我们的RPP框架已经集成到我们的视频转码服务的生产环境中,每天为数百万用户提供服务。我们的代码和模型将在论文被接受后发布。

    03

    [强基固本-视频压缩] 第九章:上下文自适应二进制算术编码 第4部分

    在继续探讨标题中提到的上下文自适应这个概念之前,我们需要对熵编码器中的二进制这个概念有一定的了解。第六章给出的编码算法的流程图告诉我们,在熵编码之前,每个块在编码期间做出的所有决策的信息会作为输入传输到熵编码器。这些信息中的大多数的数值是整数,而不是表示为0和1的二进制数。当然了,任何整数都可以用二进制数表示,这些信息会在熵编码前二值化为相应的二进制流。如果直接按照整数对应的二进制数值将其转换为码流,则意味着在二进制消息中遇到0和1的概率将几乎相等,因此算术编码器中的数据压缩比将接近零。换言之,算术编码后编码消息中的比特数将不小于编码器输入处的比特数。正因为如此,HEVC中有一个称为二进制化的特殊过程,它适用于发送到熵编码器输入端的所有数字信息。此过程将把某个图像块进行编码的过程中的所有数值转换为一组二进制比特流。接下来仅针对使用帧内预测编码的特殊情况来详细考虑这种二进制化过程。

    01

    【论文解读】Faster sorting algorithm

    基本的算法,如排序或哈希,在任何一天都被使用数万亿次。随着对计算需求的增长,这些算法的性能变得至关重要。尽管在过去的2年中已经取得了显著的进展,但进一步改进这些现有的算法路线的有效性对人类科学家和计算方法都是一个挑战。在这里,论文展示了人工智能是如何通过发现迄今为止未知的算法路线来超越目前的最先进的方法。为了实现这一点,论文将一个更好的排序程序制定为单人游戏的任务。然后,论文训练了一个新的深度强化学习代理AlphaDev来玩这个游戏。AlphaDev从零开始发现了一些小型排序算法,它优于以前已知的人类基准测试。这些算法已经集成到LLVM标准C++排序库中。对排序库的这一部分的更改表示用使用强化学习自动发现的算法替换组件。论文还在额外的领域中提出了结果,展示了该方法的通用性。

    03
    领券