首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python用符号拼接DataFrame两列

问题描述 如下图的日期dataframe,需要把开始日期和结束日期拼接在一起 原dataframe 开始日期 结束日期 2020-08-03 2020-08-09 2020-08-10 2020-08-...16 2020-08-17 2020-08-23 2020-08-24 2020-08-30 2020-08-31 2020-09-06 拼接后的dataframe 开始日期 结束日期 插入日期 2020...~ "+x['结束日期'],axis=1) # 方案2 date_xl['插入日期']=date_xl.apply(lambda x:" ~ ".join(x.values),axis=1) 上面两种方法...,原理基本一致 碰到Null值时,会报错,因为none不可与str运算 解决如下,加入if判断即可 df = pd.DataFrame([list("ABCDEF"), list...转成嵌套数组/列表 # 转换成嵌套数组 df.values np.array(df) #转换成嵌套列表 df.values.tolist() np.array(df).tolist() # 拼接 pd.DataFrame

1.7K30

从DataFrame中删除列

在操作数据的时候,DataFrame对象中删除一个或多个列是常见的操作,并且实现方法较多,然而这中间有很多细节值得关注。...如果这些对你来说都不是很清楚,建议参阅《跟老齐学Python:数据分析》中对此的详细说明。 另外的方法 除了上面演示的方法之外,还有别的方法可以删除列。...我们知道,如果用类似df.b这样访问属性的形式,也能得到DataFrame对象的列,虽然这种方法我不是很提倡使用,但很多数据科学的民工都这么干。...因此,如果要让f.d与f['d']等效,还必须要在StupidFrame类中添加 __getattr__ 方法,并使用__setattr__方法来处理设置问题(关于这两个方法的使用,请参阅《Python...当然,并不是说DataFrame对象的类就是上面那样的,而是用上面的方式简要说明了一下原因。 所以,在Pandas中要删除DataFrame的列,最好是用对象的drop方法。

7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【如何在 Pandas DataFrame 中插入一列】

    为什么要解决在Pandas DataFrame中插入一列的问题? Pandas DataFrame是一种二维表格数据结构,由行和列组成,类似于Excel中的表格。...解决在DataFrame中插入一列的问题是学习和使用Pandas的必要步骤,也是提高数据处理和分析能力的关键所在。 在 Pandas DataFrame 中插入一个新列。...第一列是 0。 **column:赋予新列的名称。 value:**新列的值数组。 **allow_duplicates:**是否允许新列名匹配现有列名。默认值为假。...axis=1) print(result) 这里我们使用concat函数将两个DataFrame沿着列方向连接,创建了一个新的DataFrame。...总结: 在Pandas DataFrame中插入一列是数据处理和分析的重要操作之一。通过本文的介绍,我们学会了使用Pandas库在DataFrame中插入新的列。

    1.1K10

    【R语言】数据框按两列排序

    有时候我们会按照两个条件来对数据排序。假设我们手上有下面这套数据,9个人,第二列(score)为他们的考试成绩,第三列(code)为对应的评级。80分以上为优秀,60-80为良,60以下为差。...在Excel里面其实还是很容已实现的。我们只需要先根据code来进行升序排序,然后次要关键字再根据分数进行降序排序。 我们就会得到如下结果 那么这个过程怎么在R里面实现呢?...主要用的是R中的order这个函数。...#读入文件,data.txt中存放的数据为以上表格中展示的数据 file=read.table(file="data.txt",header=T,sep="\t") #先按照code升序,再按照Score...在R里面我们还可以指定code按照一定的顺序来排列 #按照指定的因子顺序排序,先good,在excellent,最后poor file$Code <- factor(file$Code , levels

    2.3K20

    pandas按行按列遍历Dataframe的几种方式

    遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问。...itertuples(): 按行遍历,将DataFrame的每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。...iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问。...import pandas as pd inp = [{‘c1’:10, ‘c2’:100}, {‘c1’:11, ‘c2’:110}, {‘c1’:12, ‘c2’:123}] df = pd.DataFrame..., ‘name’) for row in df.itertuples(): print(getattr(row, ‘c1’), getattr(row, ‘c2’)) # 输出每一行 1 2 按列遍历

    7.1K20

    Excel中两列(表)数据对比的常用方法

    Excel中两列数据的差异对比,方法非常多,比如简单的直接用等式处理,到使用Excel2016的新功能Power Query(Excel2010或Excel2013可到微软官方下载相应的插件...一、简单的直接等式对比 简单的直接等式对比进适用于数据排列位置顺序完全一致的情况,如下图所示: 二、使用Vlookup函数进行数据的匹配对比 通过vlookup函数法可以实现从一个列数据读取另一列数据...,从而形成匹配对比。...vlookup函数除了适用于两列对比,还可以用于表间的数据对比,如下图所示: 三、使用数据透视进行数据对比 对于大规模的数据对比来说,数据透视法非常好用,具体使用方法也很简单,即将2列数据合并后...Excel里了 在线M函数快查及系列文章链接(建议收藏在浏览器中): https://app.powerbi.com/view?

    16.3K20

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...data = {'label': [1, 2, 3, 4]} df = pd.DataFrame(data) 这两行代码创建了一个包含单列数据的 DataFrame。...然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    15700

    Python中的DataFrame模块学

    初始化DataFrame   创建一个空的DataFrame变量   import pandas as pd   import numpy as np   data = pd.DataFrame()   ...n = np.array(df)   print(n)   DataFrame增加一列数据   import pandas as pd   import numpy as np   data = pd.DataFrame...基本操作   去除某一列两端的指定字符   import pandas as pd   dict_a = {'name': ['.xu', 'wang'], 'gender': ['male', 'female...异常处理   过滤所有包含NaN的行   dropna()函数的参数配置参考官网pandas.DataFrame.dropna   from numpy import nan as NaN   import...  # how: 'any'表示行或列只要含有NaN就去除,'all'表示行或列全都含有NaN才去除   # thresh: 整数n,表示每行或列中至少有n个元素补位NaN,否则去除   # subset

    2.5K10

    (六)Python:Pandas中的DataFrame

    的Series集合 创建         DataFrame与Series相比,除了可以每一个键对应许多值之外,还增加了列索引(columns)这一内容,具体内容如下所示: 自动生成行索引         ...aaaa  4000 2  bbbb  5000 3  cccc  6000 使用 索引与值                 我们可以通过一些基本方法来查看DataFrame的行索引、列索引和值...        添加列可直接赋值,例如给 aDF 中添加 tax 列的方法如下: import pandas as pd import numpy as np data = np.array([('xiaoming...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大的统计功能,它有大量的函数可以使用

    3.8K20

    R语言列筛选的方法--select

    数据描述 数据来源是我编写的R包learnasreml中的fm数据集。...使用R语言默认的方法:列选择 这一种,当然是简单粗暴的方法,想要哪一列,就把相关的列号提取出来,形成一个向量,进行操作即可。...5.2 放到环境变量中 「推荐的方法:」 r$> select = dplyr::select r$> a3 = a2 %>% select(ID,F1,y1,y2,y3) 推荐在载入包时,将下面代码放在开头...提取h开头的列 这里,用starts_with,会匹配开头为h的列。 其它还有contains,匹配包含的字符,还有end_with,匹配结尾的字符。 应有尽有,无所不有。...提取因子和数字的列 「匹配数字的列:」 re2 = fm %>% select_if(is.numeric) 「匹配为因子的列:」 re3 = fm %>% select_if(is.factor)

    7.8K30

    访问和提取DataFrame中的元素

    对于一个数据框而言,既有从0开始的整数下标索引,也有行列的标签索引 >>> df = pd.DataFrame(np.random.randn(4, 4), index=['r1', 'r2', 'r3...-2.080118 -0.212526 利用这两种索引,可以灵活的访问数据框中的元素,具体的操作方式有以下几种 1....索引运算符 这里的索引运算符,有两种操作方式 对列进行操作,用列标签来访问对应的列 对行进行切片操作 列标签的用法,支持单个或者多个列标签,用法如下 # 单个列标签 >>> df['A'] r1 -0.220018...r2 -1.416611 r3 -0.640207 r4 -2.254314 Name: A, dtype: float64 # 当然,你可以在列对应的Series对象中再次进行索引操作,访问对应元素...B False C True D True Name: r1, dtype: bool # 利用布尔数组,提取C,D两列 >>> df.loc[:, df.loc['r1'] > 0]

    4.4K10
    领券