首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python中for循环加速_如何提高python 中for循环的效率

大家好,又见面了,我是你们的朋友全栈君。 对于某个城市的出租车数据,一天就有33210000条记录,如何将每辆车的数据单独拎出来放到一个专属的文件中呢?...思路很简单: 就是循环33210000条记录,将每辆车的数据搬运到它该去的文件中。...因此,需要使用并行进行for循环的技巧: 由于3000万数据放到csv中导致csv打不开,因此我就把一个csv通过split软件将其切分成每份60万,共53个csv。...实质上还是循环33210000次,并行for循环就是同时处理几个60万的csv文件,就能成倍的减少时间消耗。...循环的效率就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持云海天教程。

3.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    加速Python中嵌套循环的3种方法

    在 Python 中,嵌套循环可能会导致代码运行速度较慢,尤其是当数据量较大时。以下是加速嵌套循环的三种常用方法,以及具体实现方式。...2、解决方案解决Python中嵌套循环慢的问题有几种方法:减少循环嵌套: 减少循环嵌套最简单的方法是使用更有效的数据结构。...以下是3个加速Python中嵌套循环的具体方法:方法1:使用cumulatively计算重复字符此方法不需要两个for循环,只需累加重复字符即可。...它提供了许多函数,可以用来显著加速Python中的计算。例如,您可以使用NumPy的where()函数来查找列表中的最大值,这比使用内置的max()函数要快得多。...方法 2: 并行化:利用多线程或多进程加速独立任务的循环。方法 3: 生成器和内建函数:节省内存并减少 Python 循环的开销。根据实际场景,选择合适的方法可以显著提升嵌套循环的性能。

    11210

    利用Numpy中的ascontiguousarray可以是数组在内存上连续,加速计算

    参考链接: Python中的numpy.ascontiguousarray 1....译文 所谓contiguous array,指的是数组在内存中存放的地址也是连续的(注意内存地址实际是一维的),即访问数组中的下一个元素,直接移动到内存中的下一个地址就可以。...上述数组的转置arr.T则没有了C连续特性,因为同一行中的相邻元素现在并不是在内存中相邻存储的了:   这时候arr.T变成了Fortran 连续的(Fortran contiguous),因为相邻列中的元素在内存中相邻存储的了...补充 Numpy中,随机初始化的数组默认都是C连续的,经过不规则的slice操作,则会改变连续性,可能会变成既不是C连续,也不是Fortran连续的。...Numpy可以通过.flags熟悉查看一个数组是C连续还是Fortran连续的  >>> import numpy as np >>> arr = np.arange(12).reshape(3, 4)

    2K00

    Numpy 中的 Ndarray

    numpy概述 Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 Numpy是其它数据分析及机器学习库的底层库。...2005年,Numeric+Numarray->Numpy。 2006年,Numpy脱离Scipy成为独立的项目。 numpy的核心:多维数组 代码简洁:减少Python代码中的循环。...)) # numpy.ndarray'> 内存中的ndarray对象 元数据(metadata) 存储对目标数组的描述信息,如:ndim、shape、dtype、data等。...数组对象的特点 Numpy数组是同质数组,即所有元素的数据类型必须相同 Numpy数组的下标从0开始,最后一个元素的下标为数组长度减1,同python的列表。...数组对象的创建 np.array(任何可被解释为Numpy数组的逻辑结构) import numpy as np a = np.array([1, 2, 3, 4, 5, 6]) print(a) #

    1K10

    如何加速一个简单的for循环?

    我们直接进入主题,来看一段非常简单的Python的 for 循环代码: for i in range(10000): x[i] = x[i] + 10 看到这代码,肯定有小伙伴会有疑问,这么简单的代码你告诉我竟然可以优化...且听我慢慢分析: 首先我们要意识到,这个循环体循环了10000次。 那么加速的其中一个关键就是减少循环次数,因为每次循环结束之后本质上都是一个分支指令的判断,判断这次循环是否结束。...如果是则跳出循环,进行下一个代码块的执行,否则继续循环。 另外我们还可以充分利用cpu内的寄存器。...程序在执行前,编译器会自动给我们的加法指令分配各个不同的寄存器,避免指令流水线的数据冲突,这样循环内多路并行也降低了时间开销。...饱受Leetcode超时困扰的小伙伴,这样的小trick也许能帮助你们侥幸过关! ? 对这类优化感兴趣的小伙伴,可以参考计算机体系结构相关内容学习。速速上车

    1.4K20

    【NumPy 数组过滤、NumPy 中的随机数、NumPy ufuncs】

    python之Numpy学习 NumPy 数组过滤 从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。 在 NumPy 中,我们使用布尔索引列表来过滤数组。...布尔索引列表是与数组中的索引相对应的布尔值列表。 如果索引处的值为 True,则该元素包含在过滤后的数组中;如果索引处的值为 False,则该元素将从过滤后的数组中排除。...] print(filter_arr) print(newarr) NumPy 中的随机数 什么是随机数?...实例 生成一个 0 到 100 之间的随机浮点数: from numpy import random x = random.rand() print(x) 生成随机数组 在 NumPy 中,我们可以使用上例中的两种方法来创建随机数组...实例 生成由数组参数(3、5、7 和 9)中的值组成的二维数组: from numpy import random x = random.choice([3, 5, 7, 9], size=(3,

    13210

    超过Numpy的速度有多难?试试Numba的GPU加速

    虽然我们也可以自己使用Cython或者是在Python中调用C++的动态链接库,但是我们自己实现的方法不一定有Numpy实现的快,这得益于Numpy对于SIMD等技术的深入实现,把CPU的性能发挥到了极致...这一装饰器来实现的GPU加速,在这个装饰器下的函数可以使用CUDA的语法,目前来看应该是最Pythonic的CUDA实现方案,相比于pycuda来说。...numba.cuda加速效果测试 在上一个测试案例中,为了展示结果的一致性,我们使用了内存拷贝的方法,但是实际上我们如果把所有的运算都放在GPU上面来运行的话,就不涉及到内存拷贝,因此这部分的时间在速度测试的过程中可以忽略不计..., test_length)) 在这个案例中,我们循环测试1000次的运行效果,测试对象是1024*1024大小的随机矩阵的平方算法。...但是我们需要有一个这样的概念,就是对于GPU来说,在显存允许的范围内,运算的矩阵维度越大,加速效果就越明显,因此我们再测试一个更大的矩阵: # cuda_test.py import numpy as

    2.4K20

    numpy中的文件读写

    在实际开发中,我们需要从文件中读取数据,并进行处理。...在numpy中,提供了一系列函数从文件中读取内容并生成矩阵,常用的函数有以下两个 1. loadtxt loadtxt适合处理数据量较小的文件,基本用法如下 >>> import numpy as np...默认采用空白作为分隔符,将文件中的内容读取进来,并生成矩阵,要求每行的内容数目必须一致,也就是说不能有缺失值。由于numpy矩阵中都是同一类型的元素,所以函数会自动将文件中的内容转换为同一类型。...除了经典的文件读取外,numpy还支持将矩阵用二进制的文件进行存储,支持npy和npz两种格式,用法如下 # save函数将单个矩阵存储到后缀为npy的二进制文件中 >>> np.save('out.npy...以上就是numpy文件读写的基本用法,numpy作为科学计算的底层核心包,有很多的包对其进行了封装,提供了更易于使用的借口,最出名的比如pandas,通过pandas来进行文件读写,会更加简便,在后续的文章中再进行详细介绍

    2.1K10

    Python中的numpy模块

    目录 前言 为什么引入numpy模块 第一章 numpy模块介绍 第二章 ndarray类 附录 ---- 前言 为什么引入numpy模块 列表类占用的内存数倍于数据本身占用的内存...numpy模块创建的列表(实际上是一个ndarray对象)中的所有元素将会是同一种变量类型的元素,所以即使创建了一个规模非常大的矩阵,也只会对变量类型声明一次,大大的节约内存空间。 2. 内置函数。...numpy中也提供了许多科学计算的函数和常数供用户使用。...在Matlab中也有与之相对应的索引方式,最明显的差异有三个:一是numpy矩阵对象的索引使用的是[],而Matlab使用的是();二是在逐个索引方面,numpy矩阵对象的索引通过负整数对矩阵进行倒序索引...---- 附录 Part1:视图 视图是Python语法中的一个基础规则,它不仅仅适用于numpy模块,还适用于数值对象,列表对象,字典对象。

    1.8K41

    Numpy中的矩阵运算

    安装与使用 大型矩阵运算主要用matlab或者sage等专业的数学工具,但我这里要讲讲python中numpy,用来做一些日常简单的矩阵运算!...这是 numpy官方文档,英文不太熟悉的,还有 numpy中文文档 numpy 同时支持 python3 和 python2,在 python3 下直接pip install安装即可,python2 的话建议用...如果你使用 python2.7,我这里有打包好的 安装文件 常用函数 import numpy as np np.array([[1,2,3],[4,5,6]]) # 定义一个二维数组 np.mat(...()转置矩阵 .inv()逆矩阵 # .T转置矩阵,.I逆矩阵 举个栗子 # python3 import numpy as np # 先创建一个长度为12的列表,,再重塑为4行3列的矩阵 list1...然后 numpy 的数组和矩阵也有区别!比如:矩阵有逆矩阵,数组是没有逆的!! END

    1.6K10

    NumPy中的维度Axis

    写作时间:2019-04-16 14:56:53 ------ 浅谈NumPy中的维度Axis NumPy中的维度是一个很重要的概念,很多函数的参数都需要给定维度Axis,如何直观的理解维度呢?...(有人将ndim属性叫维度,将axis叫轴,我还是习惯将axis称之为维度,axis=0称为第一个维度) 二维数组的列子 下面是一个二维数组的列子: In [1]: import numpy as np...对于axis=0第一个维度求和,不是将第一维度(行)中的所有元素相加,而是沿着第一个维度,将对应其他维度(列)的数据相加,分解开来就是第10个输入输出。...同理,对于axis=1,是沿着列,将行中的元素相加。 NumPy中对于维度的操作都是以类似这样的逻辑操作的。 多维数组 对于多维数组我们如何准确区分维度呢?...下面以图示进行说明: [NumPy中的维度] 所以,我的结论就是:在概念上维度是从整体到局部看的,最外围的是第一个维度,然后依次往里,最内部的就是最后一维。

    78150

    Numpy中的通用函数

    NumPy数组的计算:通用函数缓慢的循环通用函数介绍探索Numpy的通用函数高级通用函数的特性聚合:最小值、 最大值和其他值数组值求和最大值和最小值其他聚合函数 《Python数据科学手册》读书笔记 NumPy...数组的计算:通用函数 NumPy 数组的计算有时非常快, 有时也非常慢。...使 NumPy 变快的关键是利用向量化操作, 通常在 NumPy 的通用函数(ufunc) 中实现。...缓慢的循环 python的缓慢通常出现在许多小操作与要不断重复的时候,比如对数组每个元素做循环 # 计算数组每个元素的倒数 import numpy as np np.random.seed() def...如果这里写的是 y[::2] = 2 ** x, 那么结果将是创建一个临时数组, 该数组存放的是 2 ** x 的结果, 并且接下来会将这些值复制到 y 数组中。

    1.9K10

    ModelBuilder中的For循环和While循环

    鸽了这么久了的ModelBuilder教程,开始恢复更新了,嘤嘤嘤 现在开始讲迭代器,迭代是指以一定的自动化程度多次重复某个过程,通常又称为循环。说的通俗点就是批量循环处理,简称批处理。...需要注意的是个模型仅可使用一个迭代器。如果模型中已经存在一个迭代器,那么就没办法再添加迭代器了,只能嵌套一个子模型,在子模型里使用。 ? ?...ModelBuilder提供了四个大类,十二种迭代,在之后的文章中我会依次讲到,这次讲前两个,For循环和While 循环,本质上和编程中的For循环和While 循环工作原理完全相同 For循环,起始值到结束值按特定次数运行工作流...,简单来说就是你给定一个循环次数,然后你的模型将从头到尾执行这个数量的项目。...相较于上一个for循环的实现,这个While 循环添加了两个计算值工具和While 循环 两个计算值工具第一个是计算缓冲区距离,然后输出长整型字段,并将其作为距离添加到缓冲区工具中 ? ?

    4.3K20
    领券