首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

制作平均查准率-召回率曲线,曲线图显示不正确

平均查准率-召回率曲线(Average Precision-Recall Curve)是一种常用的评估指标,用于衡量机器学习模型在不同阈值下的查准率和召回率之间的平衡关系。该曲线能够帮助我们判断模型在不同分类阈值下的表现,并帮助我们选择最合适的阈值来达到我们的预期。

在制作该曲线时,需要进行以下步骤:

  1. 收集相关数据:需要有一组样本数据以及它们对应的真实标签和模型预测概率或分数。
  2. 设定不同的分类阈值:将模型预测的概率或分数与不同的阈值进行比较,将样本划分为正例或负例。
  3. 计算查准率和召回率:根据划分得到的结果,计算出不同阈值下的查准率和召回率。
    • 查准率(Precision):即预测为正例的样本中真实为正例的比例,计算公式为:TP / (TP + FP),其中TP表示真正例(True Positive),FP表示假正例(False Positive)。
    • 召回率(Recall):即真实为正例的样本中预测为正例的比例,计算公式为:TP / (TP + FN),其中TP表示真正例,FN表示假反例(False Negative)。
  • 绘制曲线:将不同阈值下的查准率和召回率绘制成曲线图。

当曲线显示不正确时,可能存在以下原因:

  1. 数据问题:检查数据集是否存在缺失值、异常值或标签错误等问题,确保数据的质量和准确性。
  2. 算法问题:检查模型的训练和预测过程是否正确,确保模型的稳定性和准确性。
  3. 阈值设置问题:检查分类阈值的设定是否合理,可以尝试不同的阈值来观察曲线的变化。
  4. 绘图问题:检查绘图代码是否正确,确保正确使用了合适的绘图函数和参数。

在腾讯云中,可以使用一些相关的产品和工具来支持云计算中的机器学习任务和模型评估,以下是一些推荐的产品和产品介绍链接:

  1. 腾讯云机器学习平台(https://cloud.tencent.com/product/tensorflow):提供了一站式的机器学习平台,支持数据处理、模型训练和部署等功能。
  2. 腾讯云人工智能开放平台(https://cloud.tencent.com/product/ai):提供了各类人工智能服务和工具,包括自然语言处理、图像识别、语音识别等功能。
  3. 腾讯云大数据与人工智能平台(https://cloud.tencent.com/product/tcaplusdb):提供了大数据处理和分析的解决方案,可以用于处理和分析大规模的数据集。

以上是一些相关的产品和工具,可以帮助您在云计算环境中进行机器学习任务的开发和评估工作。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

深入了解平均精度(mAP):通过精确-召回曲线评估目标检测性能

它通过绘制不同阈值下的精确召回之间的曲线来展示模型的性能。 精确-召回曲线召回为横轴,精确为纵轴,将不同阈值下的精确召回连接起来形成一条曲线。...通常,模型在较高的阈值下可以实现更高的精确,但召回较低;而在较低的阈值下,模型可以实现较高的召回,但精确较低。精确-召回曲线的形状可以显示模型在不同精确召回之间的平衡点。...通过对插值后的曲线进行积分,计算每个类别的AP,然后对所有类别的AP进行平均,得到mAP值。通过平滑精确-召回曲线,更准确地评估模型的性能。它提供了更稳定和可靠的指标。...内插精度值取召回值大于其当前召回值的最大精度,如下所示: 通过应用11点插值,我们得到: 所有点的插值 通过插值所有点,平均精度(AP)可以解释为精度x召回曲线的近似AUC。...精度-召回曲线绘制:从置信度最高的边界框开始,计算每个置信度水平下的精度和召回,并绘制精度-召回曲线平均精度计算:通过对精度-召回曲线进行积分,计算平均精度(AP)。

2K10

评估方法详解

常用的分类模型评价指标有准确(Accuracy)、精确(Precision)、召回(Recall)、F1值(F1 Value)、ROC和AUC等。...平衡点在外侧的 曲线的学习器性能优于内侧。 第三种方法是F1度量和Fβ度量。F1是基于查准率与查全率的调和平均定义的,Fβ则是加权调和平均。...与P-R曲线使用查准率、查全率为横纵轴不同,ROC的纵轴是”真正样例(True Positive Rate,简称TPR)”,横轴是“假正例(False Positive Rate,简称FPR),两者分别定义为...显示ROC的曲线图称为“ROC图” 进行学习器比较时,与P-R如相似,若一个学习器的ROC曲线被另一个学习器的曲线“包住”,则可断言后者的性能优于前者;若两个学习 器的...代价曲线图的横轴是取 值为[0,1]的正例概率代价, 纵轴是取值为[0,1]的归一化代价 画图表示如下图所示

69930
  • 《机器学习》学习笔记(二)——模型评估与选择

    验证集 2.2 性能度量(performance measure) 2.2.1 错误与精度 2.2.2 查准率与查全率 2.2.3 查准率-查全率曲线(P-R曲线)、BEP 2.2.4 ROC与AUC...按正例可能性将样本排序,依次将排序的样本作为正例计算出查全率和查准率,依次做P-R曲线图 查全率为x轴、查准率为y轴 我们还将以猫狗预测问题来解释P-R曲线(猫正狗反) 假设有20个猫狗样本(+表示猫...若对查准率/查全率不同偏好: ? ? Fβ的物理意义就是将准确召回这两个分值合并为一个分值,在合并的过程中,召回的权重是准确的β倍。...F1分数认为召回和准确率同等重要; F2分数认为召回的重要程度是准确的2倍; F0.5分数认为召回的重要程度是准确的一半。...微(micro-)查准率、查全率、F1 先求出每一个微观混淆矩阵元素的平均值(即FP、TP、FN等),再基于这些平均值计算查全率和查准率 ?

    1.7K10

    【机器学习笔记】:一文让你彻底记住什么是ROCAUC(看不懂你来找我)

    ▌混淆矩阵,准确,精准召回 1. 混淆矩阵 在介绍各个之前,先来介绍一下混淆矩阵。...召回 召回(Recall)又叫查全率,它是针对原样本而言的,它的含义是在实际为正的样本中被预测为正样本的概率,其公式如下: 精准=TP/(TP+FN) ?...如何理解P-R(查准率-查全率)这条曲线? 有的朋友疑惑:这条曲线是根据什么变化的?为什么是这个形状的曲线?其实这要从排序型模型说起。...其中横坐标为假正(FPR),纵坐标为真正(TPR),下面就是一个标准的ROC曲线图。 ? ROC曲线的阈值问题 与前面的P-R曲线类似,ROC曲线也是通过遍历所有阈值来绘制整条曲线的。...如果我们不断的遍历所有阈值,预测的正样本和负样本是在不断变化的,相应的在ROC曲线图中也会沿着曲线滑动。 ? 如何判断ROC曲线的好坏?

    2.8K20

    目标检测中常提到的IoU和mAP究竟是什么?

    是指每个类别的平均查准率的算术平均值。即先求出每个类别的平均查准率(AP),然后求这些类别的AP的算术平均值。...那么,我们先来看看P-R曲线是什么:用蓝色笔迹遮住的部分不需要关注。 ? 图中的曲线C就是一条P-R曲线,P表示纵轴的查准率precision,R表示横轴的召回或称为查全率recall。...从公式(2)可以知晓,Pinterpo(r)表示所有大于指定召回r的召回rhat所对应的的p的最大值。大于某个r的rhat有很多,我们要找到这些rhat中所对应的p是最大的那个,然后返回这个p。...这样,在置信度阈值为0.6的情况下,我们就得到了一对P(precision)和R(recall),接着我们取不同的置信度阈值,得到更多的P-R对,然后根据公式(2)找到所有大于指定召回r的召回rhat...所对应的的p的最大值(采用这种方法是为了保证P-R曲线是单调递减的,避免摇摆),作为当前指定召回r条件下的最大查准率p,然后根据公式(1)计算出AP。

    1.2K30

    个性化推荐系统设计(3.1)如何评价个性化推荐系统的效果

    不妨看看这些指标的定义先: 正确 = 提取出的正确信息条数 / 提取出的信息条数 召回 = 提取出的正确信息条数 / 样本中的信息条数   两者取值在0和1之间,数值越接近1,查准率或查全率就越高...F值 = 正确 * 召回 * 2 / (正确 + 召回) (F 值即为正确召回的调和平均值)   不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。...E值   E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式: ? image   b越大,表示查准率的权重越大。...平均正确(Average Precision)   平均正确表示不同查全率的点上的正确平均。...为了得到 一个能够反映全局性能的指标,可以看考察下图,其中两条曲线(方块点与圆点)分布对应了两个检索系统的准确-召回曲线 。 ?

    1.2K20

    算法金 | 一文彻底理解机器学习 ROC-AUC 指标

    曲线图横轴(假阳性,FPR):表示负类样本中被错误分类为正类的比例。...它通过展示查准率(Precision)和召回(Recall)之间的关系来评估模型性能。查准率(Precision):表示在所有被预测为正类的样本中,实际为正类的比例。...F1 分数(F1 Score):查准率召回的调和平均数,用于综合评价模型的精确性和召回。...最好结合多个指标(如 AUC、准确查准率召回和 F1 分数)来综合评估模型的性能。...PR 曲线:展示查准率召回之间的关系,特别适用于类别不平衡的数据集。校准曲线:评估模型的概率输出是否与实际概率一致,确保模型的概率预测是准确的。

    88600

    分类模型评估指标汇总

    从而得出如下概念 查准率:预测为正里多少实际为正,precision,也叫精度 ? 查全率:实际为正里多少预测为正,recall,也叫召回 ? 查准率和查全率是一对矛盾的度量。...例如还是一车西瓜,我希望将所有好瓜尽可能选出来,如果我把所有瓜都选了,那自然所有好瓜都被选了,这就需要所有的瓜被识别为好瓜,此时查准率较低,而召回是100%, 如果我希望选出的瓜都是好瓜,那就要慎重了...即 F1 是 P 和 R 的调和平均数。 与算数平均数 和 几何平均数相比,调和平均数更重视较小值。 在一些应用中,对查准率和查全率的重视程度有所不同。...方法2 把混淆矩阵中对应元素相加求平均,即 TP 的平均,TN 的平均,等,再计算查准率、查全率、F1,这样得到“微查准率”,“微查全率”和“微F1” ? ?...ROC曲线的绘制方法与P-R曲线类似,不再赘述,结果如下图 ? 横坐标为假正例,纵坐标为真正例曲线下的面积叫 AUC 如何评价模型呢?

    99710

    【机器学习】你需要多少训练数据?

    你必须已经具有特性比较明显、数量适合的训练数据,才能通过模型的训练学习出感兴趣、性能比较突出的学习曲线图。...随着代码的运行,会得到下面的学习曲线图,如图(1)所示 ? 图(1)中,x轴表示训练样本数量与模型参数数量的比值。y轴是模型的f-score值。图中不同颜色的曲线对应于带有不同参数数量的训练模型。...其中精度是检索出相关文档数与检索出文档总数的比率,衡量的是检索系统的查准率召回是指检索出的相关文档数和文库中所有的相关文档数的比率,衡量的是检索系统的查全率。...召回=提取出的正确信息条数/样本中的信息条数 两者取值在0和1之间,越接近数值1,查准率或查全率就越高。 3....F值=正确*召回*2/(正确+召回) 即F值即是正确召回平均值,且F值越好,说明模型的性能越好。

    1.6K50

    机器学习:你需要多少训练数据?

    你必须已经具有特性比较明显、数量适合的训练数据,才能通过模型的训练学习出感兴趣、性能比较突出的学习曲线图。...随着代码的运行,会得到下面的学习曲线图,如图(1)所示 图(1)中,x轴表示训练样本数量与模型参数数量的比值。y轴是模型的f-score值。图中不同颜色的曲线对应于带有不同参数数量的训练模型。...其中精度是检索出相关文档数与检索出文档总数的比率,衡量的是检索系统的查准率召回是指检索出的相关文档数和文库中所有的相关文档数的比率,衡量的是检索系统的查全率。...召回=提取出的正确信息条数/样本中的信息条数 两者取值在0和1之间,越接近数值1,查准率或查全率就越高。 3....F值=正确*召回*2/(正确+召回) 即F值即是正确召回平均值,且F值越好,说明模型的性能越好。

    96270

    推荐系统评测指标—准确(Precision)、召回(Recall)、F值(F-Measure)

    其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率召回是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。...召回 = 提取出的正确信息条数 / 样本中的信息条数 两者取值在0和1之间,数值越接近1,查准率或查全率就越高。 3....F值 = 正确 * 召回 * 2 / (正确 + 召回) (F 值即为正确召回的调和平均值) 不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。...如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。...3、E值 E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式: b越大,表示查准率的权重越大。

    2.9K10

    推荐系统评测指标—准确(Precision)、召回(Recall)、F值(F-Measure)

    其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率召回是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。...召回 = 提取出的正确信息条数 /  样本中的信息条数    两者取值在0和1之间,数值越接近1,查准率或查全率就越高。 3....F值  = 正确 * 召回 * 2 / (正确 + 召回) (F 值即为正确召回的调和平均值) 不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。...如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。...3、E值 E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式: ? b越大,表示查准率的权重越大。

    4.8K60

    机器学习之模型评分

    查准率和查全率是一对矛盾的度量.一般来说,查准率高时,查全率往往偏低;而查全率高时,查准率往往偏低。        F1-score,是统计学中用来衡量二分类模型精确度的一种指标。...它同时兼顾了分类模型的准确召回。F1分数可以看作是模型准确召回的一种加权平均,它的最大值是1,最小值是0。         ...随着阈值的变化,就像假设检验的两类错误一样,如下图所示召回和精确不能同时提高,因此我们就需要一个指标来调和这两个指标,于是人们就常用F1-score来进行表示: ?...Characteristic) 受试者工作特征曲线的纵轴是"真正例" (True Positive Rate,简称TPR) ,也称灵敏度,横轴是"假正例" (False Positive Rate,...cross_val_score # cv=6 是把数据分成6分,交叉验证,  mea平均数,确保数据的准确 print('准确{}'.format(cross_val_score(gaussian,

    1.2K20

    【机器学习】一文读懂分类算法常用评价指标

    本文将详细介绍机器学习分类任务的常用评价指标:准确(Accuracy)、精确(Precision)、召回(Recall)、P-R曲线(Precision-Recall Curve)、F1 Score...精确(Precision)、召回(Recall) 精准(Precision)又叫查准率,它是针对预测结果而言的,它的含义是在所有被预测为正的样本中实际为正的样本的概率,意思就是在预测为正样本的结果中...P-R曲线 P-R曲线(Precision Recall Curve)正是描述精确/召回变化的曲线,P-R曲线定义如下:根据学习器的预测结果(一般为一个实值或概率)对测试样本进行排序,将最可能是“正例...ROC曲线中的主要两个指标就是真正TPR和假正FPR,上面已经解释了这么选择的好处所在。其中横坐标为假正(FPR),纵坐标为真正(TPR),下面就是一个标准的ROC曲线图。 ?...阈值问题 与前面的P-R曲线类似,ROC曲线也是通过遍历所有阈值来绘制整条曲线的。如果我们不断的遍历所有阈值,预测的正样本和负样本是在不断变化的,相应的在ROC曲线图中也会沿着曲线滑动。 ?

    3.6K20

    推荐系统评测指标—准确(Precision)、召回(Recall)、F值(F-Measure)

    其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率召回是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。...召回 = 提取出的正确信息条数 /  样本中的信息条数    两者取值在0和1之间,数值越接近1,查准率或查全率就越高。 3....F值  = 正确 * 召回 * 2 / (正确 + 召回) (F 值即为正确召回的调和平均值) 不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。...如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。...3、E值 E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式: b越大,表示查准率的权重越大。

    1.4K50

    目标检测中常提到的IoU和mAP究竟是什么?

    是指每个类别的平均查准率的算术平均值。即先求出每个类别的平均查准率(AP),然后求这些类别的AP的算术平均值。...[i20190926091648.png] 图中的曲线C就是一条P-R曲线,P表示纵轴的查准率precision,R表示横轴的召回或称为查全率recall。...从公式(2)可以知晓,Pinterpo(r)表示所有大于指定召回r的召回rhat所对应的的p的最大值。大于某个r的rhat有很多,我们要找到这些rhat中所对应的p是最大的那个,然后返回这个p。...这样,在置信度阈值为0.6的情况下,我们就得到了一对P(precision)和R(recall),接着我们取不同的置信度阈值,得到更多的P-R对,然后根据公式(2)找到所有大于指定召回r的召回rhat...所对应的的p的最大值(采用这种方法是为了保证P-R曲线是单调递减的,避免摇摆),作为当前指定召回r条件下的最大查准率p,然后根据公式(1)计算出AP。

    3.2K60

    机器学习:你需要多少训练数据?

    你必须已经具有特性比较明显、数量适合的训练数据,才能通过模型的训练学习出感兴趣、性能比较突出的学习曲线图。...随着代码的运行,会得到下面的学习曲线图,如图(1)所示 图(1)中,x轴表示训练样本数量与模型参数数量的比值。y轴是模型的f-score值。图中不同颜色的曲线对应于带有不同参数数量的训练模型。...其中精度是检索出相关文档数与检索出文档总数的比率,衡量的是检索系统的查准率召回是指检索出的相关文档数和文库中所有的相关文档数的比率,衡量的是检索系统的查全率。...召回=提取出的正确信息条数/样本中的信息条数 两者取值在0和1之间,越接近数值1,查准率或查全率就越高。 3....F值=正确*召回*2/(正确+召回) 即F值即是正确召回平均值,且F值越好,说明模型的性能越好。

    1.3K50

    机器学习算法评价指标

    召回(recall):TP / (TP + FN),正确预测为正占全部正样本的比例 ROC和AUC ROC曲线简介 ROC曲线则是从阈值选取角度出发来研究学习器泛化性能的有力工具。...若我们更重视“查准率”,则可以把阈值设置的大一些,让分类器的预测结果更有把握;若我们更重视“查全率”,则可以把阈值设置的小一些,让分类器预测出更多的正例。...TP:正确肯定的数目; FN:漏报,没有正确找到的匹配的数目; FP:误报,给出的匹配是不正确的; TN:正确拒绝的非匹配对数; 真正类(true positive rate ,TPR), 计算公式为...F1-Score Precision和Recall指标有时是此消彼长的,即精准高了,召回就下降,在一些场景下要兼顾精准召回,最常见的方法就是F-Measure,又称F-Score。...F-Measure是P和R的加权调和平均。 欠拟合和过拟合 训练集和验证集准确都很低,很可能是欠拟合。解决欠拟合的方法就是增加模型参数,比如,构建更多的特征,减小正则项。

    83640

    一文看懂机器学习指标(一)

    大家好,我是小轩 这几天在训练一个模型,模型结果中涉及到一些参数,不太理解什么意思,就差了一些资料 这篇文章就是整理一下关于机器学习评价指标 评价指标:精确召回、F1、AUC、ROC、混淆矩阵...统计图1,TP=3,FP=1,FN=3,TN=3 下面来介绍指标公式 精确/查准率(precision) 查准率为是所有预测为正样本中,预测正确的比例 说通俗一些就是预测为正当中,为真正的正的比例,...哎呀好绕口呀 召回/查全率(recall) 查全率为是所有真实标签为正的样本中,预测正确的比例 说白了就是在所有正样本中,准确预测出为正的比例 F1 粗略的理解就是precision和recall平均值...F 分数是一个综合指标,为查准率和查全率的加权调和平均。...对上一步所得取倒数 ROC曲线(AUC) 上面精确召回可能存在一些问题 比如:在我们测试集当中,大部分都为正样本,模型不具备辨识能力,无论正样本还是负样本,可能会把结果全部判断为正,这时候预测召回会特别高

    42230

    什么是目标检测中的平均精度均值(mAP)?

    要理解平均精度均值,我们必须花一些时间来研究精度-召回曲线。 精确-召回曲线 精确是“模型猜测它正确猜测的次数?” 的一个衡量标准,召回是一种衡量“模型每次应该猜到的时候都猜到了吗?” 。...精度-召回曲线是绘制模型精度和以召回作为模型置信阈值函数的过程。它是向下倾斜的,因为随着置信度的降低,会做出更多的预测,进而预测的准确性会降低(影像精确度)。...一个 NLP 项目中不同模型的精度、召回和置信度 随着模型越来越不稳定,曲线向下倾斜,如果模型具有向上倾斜的精度和召回曲线,则该模型的置信度估计可能存在问题。...精确召回汇总指标图 最终的精确-召回曲线指标是平均精度 (AP),它被计算为在每个阈值处实现的精度的加权平均值,并将前一个阈值的召回增加用作权重。...我们真正绘制的 mAP 精确召回曲线图 在上图中,红色绘制的是对 IoU 的最高要求(可能是 90%),橙色线绘制的是对 IoU 的最低要求(可能是 10%),要绘制的线数通常由挑战设置。

    8910
    领券