首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

利用opencv在卫星图像上检测植被

利用OpenCV在卫星图像上检测植被是一种基于计算机视觉技术的应用。OpenCV是一个开源的计算机视觉库,提供了丰富的图像处理和分析功能,可以用于图像的读取、处理、分割、特征提取等操作。

植被检测是通过分析卫星图像中的像素信息,识别出图像中的植被区域。这对于农业、林业、环境保护等领域具有重要意义。植被检测可以帮助农民监测农作物的生长情况,及时发现病虫害等问题;可以帮助林业部门监测森林覆盖率和植被变化;可以帮助环境保护部门监测城市绿化覆盖率和生态环境变化。

在OpenCV中,可以使用图像分割、特征提取和机器学习等技术来实现植被检测。常用的方法包括基于阈值的分割、基于颜色空间的分割、基于纹理特征的分割等。通过对图像进行预处理、特征提取和分类,可以将植被区域与其他区域进行区分。

腾讯云提供了一系列与图像处理相关的产品和服务,可以用于支持植被检测应用。例如,腾讯云的图像处理服务(https://cloud.tencent.com/product/ti)提供了图像分析、图像识别、图像搜索等功能,可以用于植被检测中的图像处理和特征提取。此外,腾讯云还提供了云服务器、云数据库、云存储等基础设施服务,可以支持植被检测应用的部署和运行。

总结起来,利用OpenCV在卫星图像上检测植被是一种基于计算机视觉技术的应用。通过图像处理和分析,可以实现对植被区域的识别和提取。腾讯云提供了一系列与图像处理相关的产品和服务,可以支持植被检测应用的开发和部署。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 你家要走光!谷歌地球搞了个「动态世界」,10米精度实时看遍全球土地

    ---- 新智元报道   编辑:David 时光 【新智元导读】谷歌地球整大活,全球每一寸土地变化,现在都可以接近实时监测,精度达10米级,以后家里要被看光了吗? 我们的家园,地球,其实真的很能折腾的! 当然,有些是自己折腾,比如自然灾难,如洪水和地震,有些是被人类折腾的,如砍伐森林和城市扩张等。 地球上的同一个地方,一个月前还是农田,可能一个月后可能就盖起了高楼大厦,一年前还是一片树林,一年后可能因一场大火,就烧成了荒地。 掌握这些「折腾」前后的变化很重要,但很难实时掌握。 现在,谷歌与世界资源研

    03

    LANDSAT_7/02/T1/TOA的Landsat7_C2_TOA类数据集

    Landsat7_C2_TOA数据集是将数据每个波段的辐射亮度值转换为大气层顶表观反射率TOA,是飞行在大气层之外的航天传感器量测的反射率,包括了云层、气溶胶和气体的贡献,可通过辐射亮度定标参数、太阳辐照度、太阳高度角和成像时间等几个参数计算得到。为了便于在线分析存储,平台将影像像素值扩大了10000倍。Landsat7卫星携带的主要传感器为增强型主题成像仪(ETM+),星上设置绝对定标,提高了对地观测分辨率和定位质量,调整了辐射测量精度、范围和灵敏度。卫星每16天可以实现一次全球覆盖。2003年6月以来,因扫描线校正器(SLC)故障导致传输数据存在间隙问题。Landsat ETM+影像数据包括8个波段,波段1-5和波段7的空间分辨率为30米,波段6的空间分辨率为60米,波段8的空间分辨率为15米,南北的扫描范围大约为170km,东西的扫描范围大约为183km。前言 – 人工智能教程

    01

    开发丨图像处理一定要用卷积神经网络?这里有一个另辟蹊径的方法

    近年来,卷积神经网络(CNN)以其局部权值共享的特殊结构在语音识别和图像处理等方面得到了快速发展,特别是大型图像处理方面,更是表现出色,逐渐成为了行业内一个重要的技术选择。 不过,好用并不代表万能。这里 AI 科技评论从一个卫星图像分析的具体实例出发,介绍了CNN建模和本地拉普拉斯滤波这两种分析技术的效果对比,最终我们发现,本地拉普拉斯滤波的效果反而更好。 卷积神经网络 为了从卫星图像中分析和评估一项自然灾害造成的损失,首先需要得到相关地理区域实时的高分辨率的卫星图像,这是进行后续所有分析的数据基础。目

    09

    Super-Resolution on Object Detection Performance in Satellite Imagery

    探讨了超分辨率技术在卫星图像中的应用,以及这些技术对目标检测算法性能的影响。具体来说,我们提高了卫星图像的固有分辨率,并测试我们能否以比固有分辨率更高的精度识别各种类型的车辆、飞机和船只。使用非常深的超分辨率(VDSR)框架和自定义随机森林超分辨率(RFSR)框架,我们生成了2×、4×和8×的增强级别,超过5个不同的分辨率,范围从30厘米到4.8米不等。使用本地和超解析数据,然后使用SIMRDWN对象检测框架训练几个定制的检测模型。SIMRDWN将许多流行的目标检测算法(如SSD、YOLO)组合成一个统一的框架,用于快速检测大型卫星图像中的目标。这种方法允许我们量化超分辨率技术对跨多个类和分辨率的对象检测性能的影响。我们还量化了目标检测的性能作为一个函数的本机分辨率和目标像素大小。对于我们的测试集,我们注意到性能从30 cm分辨率下的平均精度(mAP) = 0.53下降到4.8 m分辨率下的mAP = 0.11。从30厘米图像到15厘米图像的超级分辨效果最好;mAP改进了13 - 36%。对于较粗的分辨率而言,超级分辨率的好处要小一些,但仍然可以在性能上提供小的改进。

    00

    Google Earth Engine(GEE)—— ETH Global Sentinel-2 10米植被冠层高度数据集(2020年)

    ETH Global Sentinel-2 10米冠层高度(2020年) 全世界的植被高度变化是全球碳循环的基础,也是生态系统及其生物多样性运作的核心。管理陆地生态系统、缓解气候变化和防止生物多样性的丧失,需要地理空间上的明确信息,而且最好是高度解析的信息。在这里,我们提出了2020年第一个全球的、地面采样距离为10米的墙到墙的树冠高度图。没有一个数据源能满足这些要求:像GEDI这样的专门的空间任务提供了稀疏的高度数据,但覆盖面却前所未有,而像Sentinel-2这样的光学卫星图像提供了全球密集的观测,但不能直接测量垂直结构。通过融合GEDI和Sentinel-2,我们开发了一个概率深度学习模型,从地球上任何地方的Sentinel-2图像中检索树冠高度,并对这些估计的不确定性进行量化。

    01

    A Comparison of Super-Resolution and Nearest Neighbors Interpolation

    随着机器视觉和深度卷积神经网络(CNNs)被应用于新的问题和数据,网络架构的进步和这些网络的应用都得到了快速的发展。然而,在大多数分类和目标检测应用中,图像数据是这样的,感兴趣的对象相对于场景来说是很大的。这可以在最流行的公共基准数据集ImageNet、VOC、COCO和CIFAR中观察到。这些数据集和它们对应的挑战赛继续推进网络架构比如SqueezeNets, Squeeze-and-Excitation Networks, 和 Faster R-CNN。对于DigitalGlobe的WorldView-3卫星将每个像素表示为30平方厘米的区域的卫星数据。在这些场景中,在大于3000x3000的场景中像汽车这样的物体通常是13x7像素或更小。这些大型场景需要预处理,以便在现代目标检测网络中使用,包括将原始场景切割成更小的组件用于训练和验证。除此之外,在停车场和繁忙的道路等区域,车辆等物体往往位于较近的位置,这使得车辆之间的边界在卫星图像中难以感知。缺乏公共可用的标记数据也阻碍了对这个应用程序空间的探索,只有xView Challenge数据集拥有卫星捕获的带有标记对象的图像。等空中数据集分类细粒度特性在空中图像(COFGA),大规模数据集在空中图像(队伍),对象检测和汽车开销与上下文(COWC)也有类似的对象类,但存在一个较低的地面样本距离(德牧)使他们更容易获得良好的对象检测结果,但限制了实际应用。考虑到将CNNs应用于卫星数据所面临的挑战,将升级作为预处理步骤对实现准确探测目标的良好性能至关重要。深度学习的进步导致了许多先进的体系结构可以执行升级,在低分辨率图像上训练网络,并与高分辨率副本进行对比验证。尽管关于这一主题的文献越来越多,但超分辨率(SR)在目标检测和分类问题上的应用在很大程度上还没有得到探索,SR与最近邻(NN)插值等也没有文献记载。SR网络作为卫星图像中目标检测的预处理步骤,具有良好的应用前景,但由于其深度网络包含数百万个必须正确训练的参数,因此增加了大量的计算成本。与SR不同的是,NN仍然是最基本的向上缩放方法之一,它通过取相邻像素并假设其值来执行插值,从而创建分段阶跃函数逼近,且计算成本很小。

    03

    农林业遥感图像分类研究[通俗易懂]

    遥感图像处理是数字图像处理技术中的一个重要组成部分,长期以来被广泛应用于农林业的遥感测绘,防灾减灾等领域。本文旨在通过深度学习技术从遥感影像中分类出农田和林业地块。手工从遥感图像中分类出农田和林业区域分类虽然准确但是效率低下,并且很多采用传统图像分割技术的方法泛化性能差,不适合场景复杂的遥感图像。经实践证明,使用深度学习技术在各种计算机视觉任务中都取得了良好的效果,因此本文首先使用先进的深度学习框架进行分类实验,例如使用PSPNet,UNet等作为分割网络对遥感图像数据集进行分类与分割训练。这些框架在ImageNet,COCO,VOC等数据集上表现很好,但是由于遥感图像数据集相对于ImageNet,COCO等数据集,不仅检测对象相对较小而且可供学习的数据集样本较少,需要针对这一特点进行优化。本文经过多次实验将高分辨率的图像切割成合适大小分辨率的图像以减小神经网络的输入,同时进行图片的预处理和数据增强来丰富学习样本。同时在真实情况下,农林区域易受到拍摄视角,光照等造成分割对象重叠,因此本文提出一种处理分割对象重叠的处理策略,来优化边界预测不准确的情况,使用该方法后准确率有明显提升。经实验证明,本文所提出的基于深度学习的农林业遥感影像分割在开源遥感图像数据集上的取得了94.08%的准确率,具有较高的研究价值 农林业遥感图像数据(图1)对于许多与农林业相关的应用至关重要。例如作物类型和产量监测,防灾减灾以及对粮食安全工作的研究和决策支持。最初,这些数据主要由政府机构使用。如今,蓬勃发展的农林业技术也需要在农场管理,产量预测和林业规划等各种应用领域进行革新。以往农林业地块的高质量遥感图像数据主要是手动在高分辨率图像中分割出来的,即通过土地功能不同引起的颜色,亮度或纹理的差异与周围区域 亮度或纹理的差异与周围区域区分开来。尽管农林业遥感图像的手动分类可以非常准确,但是非常耗时耗力。 图1.1:农田的遥感图像分割 定期更新农林业遥感图像数据的需求日益增加扩大了自动化分割农林业遥感图像的需求。 与ImageNet、VOC2007、COCO等目标检测/分类数据集中的大多数图像相比,农林业遥感图像中的对象相对简单。例如,人体的图像数据看起来要复杂得多,因为它包含各种不同纹理和形状的子对象(面部,手部,衣服等)。因此,优化传统的图像分割以及深度学习技术来设计用于农林业遥感图像分割的算法是非常重要的。该模型需要正确地排除不需要进行分割的对象(房屋,工厂,停车场等),区分具有几乎相似的光谱特性的相邻区域和可见度差的边界区域,并且正确地分割出所需的对象。 1.2 选题来源与经费支持 本研究课题来源于计算机与信息工程学院 随着传感器技术,航空航天技术,图像处理技术快速的发展,利用卫星遥感图像进行深度学习处理广泛应用于生产实际中。由于农林业遥感图像场景复杂,使用传统图像处理分割算法效果差且泛化性能弱,本文使用深度学习方法,在现有的的深度学习模型上训练,优化,最终提出一种一种优化后的深度学习模型,经测试,该模型在收集的农林业遥感图像数据集上可以准确的分割出所需的对象,本文提出的模型主要解决如下几个难点:

    02
    领券