首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pyspark之dataframe操作

、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...# ['color', 'length'] # 查看行数,和pandas不一样 color_df.count() # dataframe列名重命名 # pandas df=df.rename(columns...# 选择一列的几种方式,比较麻烦,不像pandas直接用df['cols']就可以了 # 需要在filter,select等操作符中才能使用 color_df.select('length').show...spark.createDataFrame(department, schema=["emp_id","departement"]) department.show() # 2.连接 # join默认是内连接,最终结果会存在重复列名...# 如果是pandas,重复列会用_x,_y等后缀标识出来,但spark不会 # join会在最后的dataframe中存在重复列 final_data = employees.join(salary

10.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Power Pivot中如何计算具有相同日期数据的移动平均?

    (四) 如何计算具有相同日期数据的移动平均? 数据表——表1 ? 效果 ? 1. 解题思路 具有相同日期数据,实际上也就是把数据进行汇总求和后再进行平均值的计算。其余和之前的写法一致。...建立数据表和日期表之间的关系 2. 函数思路 A....() , //满足5日均线计算条件 AverageX(Filter(All('日历'), [排名]>=pm-5 && [排名]的符合要求的日期区间表...满足计算的条件增加1项,即金额不为空。 是通过日历表(唯一值)进行汇总计算,而不是原表。 计算的平均值,是经过汇总后的金额,而不单纯是原来表中的列金额。...如果觉得有帮助,那麻烦您进行转发,让更多的人能够提高自身的工作效率。

    3.1K10

    pandas系列4_合并和连接

    DF数据,缺值用NaN补充 join outer:合并,缺值用nan inner:求交集,非交集部分直接删除 keys:用于层次化索引 ignore_index:不保留连接轴上的索引,产生新的索引 官方文档...、right、left on 用于连接的列名,默认是相同的列名 left_on \right_on 左侧、右侧DF中用作连接键的列 sort 根据连接键对合并后的数据进行排序,默认是T suffixes...重复列名,直接指定后缀,用元组的形式(’_left’, ‘_right’) left_index、right_index 将左侧、右侧的行索引index作为连接键(用于index的合并) df1 =...如果不指定on参数,自动按照重叠的列名进行合并 最好指定key: pd.merge(df1, df2, on='key') # 将两个df数据中相同的值进行合并 pd.merge(df1, df2)...df数据中的新列名 lkey data1 rkey data2 0 b 0 b 1 1 b 1 b 1 2 a 2 a 0 3 a 4 a 0 4 a 5 a 0 交集和并集 通过参数how来实现

    78710

    Pandas中级教程——数据合并与连接

    Python Pandas 中级教程:数据合并与连接 Pandas 是一款强大的数据处理库,提供了丰富的功能来处理和分析数据。在实际数据分析中,我们常常需要将不同数据源的信息整合在一起。...本篇博客将深入介绍 Pandas 中的数据合并与连接技术,帮助你更好地处理多个数据集的情况。 1. 安装 Pandas 确保你已经安装了 Pandas。...数据合并 4.1 使用 merge 函数 merge 函数是 Pandas 中用于合并数据的强大工具,它类似于 SQL 中的 JOIN 操作。...处理重复列名 当连接两个数据集时,可能会出现重复的列名,可以使用 suffixes 参数为重复列名添加后缀。...总结 通过学习以上 Pandas 中的合并与连接技术,你可以更好地处理多个数据集之间的关系,提高数据整合的效率。在实际项目中,理解这些技术并熟练运用它们是数据分析的重要一环。

    19710

    设计在单链表中删除值相同的多余结点的算法

    这是一个无序的单链表,我们采用一种最笨的办法,先指向首元结点,其元素值为2,再遍历该结点后的所有结点,若有结点元素值与其相同,则删除;全部遍历完成后,我们再指向第二个结点,再进行同样的操作。...这样就成功删除了一个与首元结点重复的结点,接下来以同样的方式继续比较,直到整个单链表都遍历完毕,此时单链表中已无与首元结点重复的结点;然后我们就要修改p指针的指向,让其指向首元结点的下一个结点,再让q指向其下一个结点...,继续遍历,将单链表中与第二个结点重复的所有结点删除。...刚才我们已经删除了一个结点,那么接下来p应该指向下一个结点了: 此时让指针p指向的结点与下一个结点的元素值比较,发现不相等,那么让q直接指向下一个结点即可:q = q -> next。...通过比较发现,下一个结点的元素值与其相等,接下来就删除下一个结点即可: 此时p的指针域也为NULL,算法结束。

    2.3K10

    Pandas数据合并:concat与merge

    一、引言在数据分析领域,Pandas是一个强大的Python库,它提供了灵活高效的数据结构和数据分析工具。其中,数据的合并操作是数据预处理中不可或缺的一部分。...它是一种简单的拼接方式,适用于多种场景,例如将不同时间段的数据纵向堆叠,或者将具有相同索引的不同特征横向拼接。(二)参数解析objs:要连接的对象列表,可以是DataFrame或Series。...(三)案例分析假设我们有两个关于学生成绩的DataFrame,分别记录了语文成绩和数学成绩,且它们具有相同的索引(学生编号)。我们可以使用concat将其横向拼接。...因为两个DataFrame都有student_id这一列,直接拼接会导致重复列名。...how:指定合并的方式,常见的有'inner'(内连接)、'outer'(外连接)、'left'(左连接)、'right'(右连接)。on:指定用于合并的列名,当左右两侧的列名相同时使用此参数。

    14210

    对比Excel,Python pandas删除数据框架中的列

    标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...唯一的区别是,在该方法中,我们需要指定参数axis=1。下面是.drop()方法的一些说明: 要删除单列:传入列名(字符串)。 删除多列:传入要删除的列的名称列表。...图3 重赋值方法 也就是方括号法,但这不是真正的删除方法,而是重新赋值操作。但是,最终结果与删除相同。...如果我们需要保留许多列,必须键入计划保留的所有列名称,这可能需要大量键入。

    7.2K20

    对比Excel,Python pandas删除数据框架中的行

    标签:Python与Excel,pandas 对于Excel来说,删除行是一项常见任务。本文将学习一些从数据框架中删除行的技术。...准备数据框架 我们将使用前面系列中用过的“用户.xlsx”来演示删除行。 图1 注意上面代码中的index_col=0?如果我们将该参数留空,则索引将是基于0的索引。...使用.drop()方法删除行 如果要从数据框架中删除第三行(Harry Porter),pandas提供了一个方便的方法.drop()来删除行。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除行 图2 我们跳过了参数axis,这意味着将其保留为默认值0或行。因此,我们正在删除索引值为“Harry Porter”的行。...这次我们将从数据框架中删除带有“Jean Grey”的行,并将结果赋值到新的数据框架。 图6

    4.6K20

    Word VBA技术:删除表格中内容相同的重复行(加强版)

    标签:Word VBA 在《Word VBA技术:删除表格中内容相同的重复行》中,我们演示了如何使用代码删除已排序表中第1列内容相同的行。...然而,如果表格中第1列没有排序,那么如何删除这列中内容相同的行呢? 对上篇文章中介绍的代码稍作调整,就可以实现删除列中相同内容的行的任务。...Long Dim strLastRowCell As String Dim strCell As String Dim strCellPrevious As String '指定想要操作的表格...End If Next j Next i '打开屏幕更新 Application.ScreenUpdating = True End Sub 代码从表格最后一行开始,依次遍历表格中的所有行并对第一列中的内容进行比较...,删除具有相同内容的行。

    2.6K20

    pandas多表操作,groupby,时间操作

    多表操作 merge合并 pandas.merge可根据一个或多个键将不同DataFrame中的行合并起来 pd.merge(left, right)# 默认merge会将重叠列的列名当做键,即how...='inner',有多个重复列名则选取重复列名值都相同的行 # 指定“on”作为连接键,left和right两个DataFrame必须同时存在“on”列,连接键也可N对N(少用) pd.merge(left..."])#两个表取key1,key2都相同的行,right的的列放在left列右边 pd.merge(left, right, left_on="key", right_on="key")#两个表取...key列行相同的行,其他重复列名变为column_x,column_y,与on='key'相同 # suffixes:用于追加到重叠列名的末尾,默认为("_x", "_y") pd.merge(left...pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。

    3.8K10

    pandas技巧6

    本篇博文主要是对之前的几篇关于pandas使用技巧的小结,内容包含: 创建S型或者DF型数据,以及如何查看数据 选择特定的数据 缺失值处理 apply使用 合并和连接 分组groupby机制 重塑reshaping...keys:用于层次化索引 ignore_index:不保留连接轴上的索引,产生新的索引 连接merge 可根据⼀个或多个键将不同DataFrame中的⾏连接起来,它实现的就是数据库的join操作 ,就是数据库风格的合并...常用参数表格 参数 说明 left 参与合并的左侧DF right 参与合并的右侧DF how 默认是inner,inner、outer、right、left on 用于连接的列名,默认是相同的列名...left_on \right_on 左侧、右侧DF中用作连接键的列 sort 根据连接键对合并后的数据进行排序,默认是T suffixes 重复列名,直接指定后缀,用元组的形式(’_left’, ‘_right...values是生成的透视表中的数据 index是透视表的层次化索引,多个属性使用列表的形式 columns是生成透视表的列属性

    2.6K10

    Python~Pandas 小白避坑之常用笔记

    ; 2、Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具; 3、pandas提供了大量能使我们快速便捷地处理数据的函数和方法;它是使Python成为强大而高效的数据分析环境的重要因素之一...= sheet1.duplicated(subset=['user_id']).sum() # 再次统计user_id列 重复值的数量 print("剔除后-user_id重复列数:", duplicated_num...对象进行异常值剔除、修改 需求:“Age”列存在数值为-1、0 和“-”的异常值,删除存在该情况的行数据;“Age”列存在空格和“岁”等异常字符,删除这些异常字符但须保留年龄数值 import pandas...(城市, 地区)列 print(sheet1.head(5)) 四、数据提取、loc、iloc的使用 1.根据列名提取数据 import pandas as pd sheet1 = pd.read_excel...,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法,续有常用的pandas函数会在这篇博客中持续更新。

    3.1K30
    领券