首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

列的和: Pandas .sum()返回0.0

Pandas是一个开源的数据分析和数据处理库,提供了丰富的数据结构和数据分析工具。在Pandas中,可以使用.sum()方法对数据进行求和操作。

Pandas的.sum()方法用于计算数据的和。当应用于DataFrame对象时,默认情况下会对每一列进行求和操作,并返回一个包含每一列和的Series对象。如果应用于Series对象,则会返回一个标量值,即该Series对象的和。

优势:

  1. 灵活性:Pandas提供了丰富的数据结构,如Series和DataFrame,可以方便地处理各种类型的数据。
  2. 强大的数据处理能力:Pandas提供了许多数据处理和转换的函数,如合并、分组、过滤、排序等,可以高效地进行数据清洗和转换。
  3. 快速的计算速度:Pandas底层使用了NumPy库,能够高效地处理大规模数据,并且提供了向量化操作,能够加速计算过程。
  4. 丰富的数据分析工具:Pandas提供了各种统计分析和数据可视化的函数,如描述性统计、相关性分析、绘图等,方便用户进行数据分析和探索。

应用场景:

  1. 数据清洗和预处理:Pandas提供了丰富的数据处理函数,可以方便地进行数据清洗和预处理,如缺失值处理、异常值处理、数据转换等。
  2. 数据分析和探索:Pandas提供了各种统计分析和数据可视化的函数,可以进行数据分析和探索,如描述性统计、相关性分析、绘图等。
  3. 数据建模和机器学习:Pandas可以与其他机器学习库(如Scikit-learn)配合使用,进行数据建模和机器学习任务,如特征工程、模型训练等。

推荐的腾讯云相关产品: 腾讯云提供了云计算相关的产品和服务,其中与数据处理和分析相关的产品包括云数据库 TencentDB、云数据仓库 Tencent Data Lake Analytics、云数据集成 Tencent Data Integration等。这些产品可以帮助用户在云上进行数据处理和分析任务。

  • 腾讯云数据库 TencentDB:https://cloud.tencent.com/product/cdb
  • 云数据仓库 Tencent Data Lake Analytics:https://cloud.tencent.com/product/dla
  • 云数据集成 Tencent Data Integration:https://cloud.tencent.com/product/dti
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • pandaslociloc_pandas获取指定数据

    大家好,又见面了,我是你们朋友全栈君 实际操作中我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:ilocloc。...读取第二行值 (2)读取第二行值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...[1,:] (2)读取第二值 # 读取第二全部值 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某 # 读取第1行,第B对应值 data3...columns进行切片操作 # 读取第2、3行,第3、4 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里区间是左闭右开,data.iloc[1:

    8.8K21

    Pandas 查找,丢弃值唯一

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找丢弃 DataFrame 中值唯一,简言之,就是某数值除空值外,全都是一样,比如:全0,全1,或者全部都是一样字符串如...:已支付,已支付,已支付… 这些大多形同虚设,所以当数据集很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把缺失值先丢弃,再统计该唯一值个数即可。...代码实现 数据读入 检测值唯一所有并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...值唯一 ” --> “ 除了空值以外唯一值个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我其余文章,提建议,共同进步。

    5.7K21

    Pandas基础使用系列---获取行

    前言我们上篇文章简单介绍了如何获取行数据,今天我们一起来看看两个如何结合起来用。获取指定行指定数据我们依然使用之前数据。...大家还记得它们区别吗?可以看看上一篇文章内容。同样我们可以利用切片方法获取类似前4这样数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一也计算在内了。...如果要使用索引方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多。为了更好演示,咱们这次指定索引df = pd.read_excel(".....通常是建议这样获取,因为从代码可读性上更容易知道我们获取是哪一行哪一。当然我们也可以通过索引切片方式获取,只是可读性上没有这么好。...df.iloc[[2,5], :4]如果不看结果,只从代码上看是很难知道我们获取是哪几列数据。结尾今天内容就是这些,下篇内容会大家介绍一些和我们这两篇内容相关一些小技巧或者说小练习敬请期待。

    60800

    用过Excel,就会获取pandas数据框架中值、行

    在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运pandas库提供了获取值、行简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例中为4行5。 图3 使用pandas获取 有几种方法可以在pandas中获取。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行交集。...图9 要获得第2行第4行,以及其中用户姓名、性别年龄,可以将行列作为两个列表传递,如下图所示。 图10 记住,df[['用户姓名','年龄','性别']]返回一个只有三新数据框架。...接着,.loc[[1,3]]返回该数据框架第1行第4行。 .loc[]方法 正如前面所述,.loc语法是df.loc[行,],需要提醒行(索引)可能值是什么?

    19.1K60

    数据科学 IPython 笔记本 7.11 聚合分组

    大数据分析必要部分是有效总结:计算聚合,如sum(),mean(),median(),min()max(),其中单个数字提供了大数据集潜在本质见解。...() 最小最大值 std(), var() 标准差方差 mad() 平均绝对偏差 prod() 所有项目的积 sum() 所有项目的 这些都是DataFrameSeries对象方法。...索引 `GroupBy对象支持索引,方式与DataFrame相同,并返回修改后GroupBy``对象。...该函数应该接受DataFrame,并返回一个 Pandas 对象(例如,DataFrame,Series)或一个标量;组合操作将根据返回输出类型进行调整。...()非常灵活:唯一规则是,函数接受一个DataFrame并返回一个 Pandas 对象或标量;在中间做什么取决于你!

    3.6K20

    使用Pandas实现1-6分别第0比大小得较小值

    一、前言 前几天在Python白银交流群【星辰】问了一个pandas处理Excel数据问题,提问截图如下: 下图是他原始代码截图: 二、实现过程 其实他这个代码,已经算实现了,如果分别进行定义的话...,每一做一个变量接收,也是可以实现效果,速度上虽然慢一些,但是确实可行。...df[f'min{i}'] = df[['标准数据', f'测试{i}']].min(axis=1) print(df) 看上去确实是实现了多比较效果。...这篇文章主要盘点了一个Pandas处理问题,文中针对该问题,给出了具体解析代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【星辰】提问,感谢【dcpeng】给出思路代码解析,感谢【Jun】、【瑜亮老师】等人参与学习交流。

    1.2K20

    Pandas vs Spark:获取指定N种方式

    导读 本篇继续Pandas与Spark常用操作对比系列,针对常用到获取指定多种实现做以对比。...无论是pandasDataFrame还是spark.sqlDataFrame,获取指定一是一种很常见需求场景,获取指定之后可以用于提取原数据子集,也可以根据该衍生其他。...由于Pandas中提供了两种核心数据结构:DataFrameSeries,其中DataFrame任意一行任意一都是一个Series,所以某种意义上讲DataFrame可以看做是Series容器或集合...在Spark中,提取特定也支持多种实现,但与Pandas中明显不同是,在Spark中无论是提取单列还是提取单列衍生另外一,大多还是用于得到一个DataFrame,而不仅仅是得到该Column类型...03 小结 本文分别列举了PandasSpark.sql中DataFrame数据结构提取特定多种实现,其中Pandas中DataFrame提取一既可用于得到单列Series对象,也可用于得到一个只有单列

    11.5K20

    Excel与pandas:使用applymap()创建复杂计算

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算,并讲解了一些简单示例。...通过将表达式赋值给一个新(例如df['new column']=expression),可以在大多数情况下轻松创建计算。然而,有时我们需要创建相当复杂计算,这就是本文要讲解内容。...记住,我们永远不应该循环遍历pandas数据框架/系列,因为如果我们有一个大数据集,这样做效率很低。...pandas applymap()方法 pandas提供了一种将自定义函数应用于或整个数据框架简单方法,就是.applymap()方法,这有点类似于map()函数作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三每一上分别使用map(),而applymap()能够覆盖整个数据框架(多)。

    3.9K10

    Pandas中如何查找某中最大值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610
    领券