首页
学习
活动
专区
圈层
工具
发布

Ray:AI的分布式系统

尽管针对特定用例(如 参数服务器或超参数搜索)和AI(人工智能)之外的高质量分布式系统(如Hadoop或Spark)提供了良好的解决方案,但在边界开发算法的从业者往往从头构建自己的系统基础架构。...Ray(高性能分布式执行框架)的其中一个目标是使从业者能够将一个运行在笔记本电脑上的原型算法,用相对较少的代码行使之成为一个高性能的分布式应用程序并在集群(或多个单核机器)上高效运行。...这样的框架应该包括手动优化系统的性能优势,而不需要用户对调度,数据传输和机器故障进行推理。...与其他分布式系统的关系:目前使用了许多流行的分布式系统,但是其中大多数并不是用AI应用程序构建的,且缺乏支持所需的性能以及表示AI应用程序的API(应用程序编程接口)。...目前的分布式系统中缺少以下功能(在各种组合中): 支持毫秒级任务和每秒数百万个任务 嵌套并行(任务内并行任务,例如,超参数搜索内部的并行模拟)(见下图) 在运行时动态确定任意任务依赖关系(例如,为了避免等待缓慢的工作人员

2.5K60

Ray:AI的分布式系统

尽管针对特定用例(如参数服务器或超参数搜索)和AI之外的高质量分布式系统(如Hadoop或Spark)提供了良好的解决方案,但在边界开发算法的从业者往往从头构建自己的系统基础架构。...这样的框架应该包括手动优化系统的性能优势,而不需要用户对调度,数据传输和机器故障进行推理。...与其他分布式系统的关系:今天使用了许多流行的分布式系统,但是其中大多数并不是用AI应用程序构建的,并且缺乏支持所需的性能以及表示AI应用程序的API。...从今天的分布式系统来看,它们缺少以下功能(以各种组合方式): 支持毫秒级任务和每秒数百万个任务 嵌套并行(在任务内并行化任务,例如超参数搜索内部的并行模拟)(见下图) 在运行时动态确定任意任务依赖关系(...下:多个参数服务器actor使用多个工作进程执行分布式培训。

3.1K100
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【AI系统】分布式通信与 NVLink

    分布式通信是指将计算机系统中的多个节点连接起来,使它们能够相互通信和协作,以完成共同的任务。...算力需求大:大规模的数据和参数,使得模型无法在单机上运行和计算,这一方面要求计算硬件的不断进步,另一方面也要求 AI 框架具有分布式并行训练的能力。所以说,为了解决上述问题我们需要引入分布式并行策略。...AI 框架分布式对于模型训练来说,不管是哪一种并行策略其本质上包括将模型进行“纵向”或“横向”的切分,然后将单独切分出来的放在不同的机器上进行计算,来充分的利用计算资源。...以上我们介绍的都是软件层面的分布式策略和算法,接下来我们来看下通信的硬件上是如何实现的。通信硬件在 AI 训练中,分布式通信是至关重要的,特别是在处理大模型和海量数据时。...这两项技术的引入,为 GPU 集群和深度学习系统等应用场景带来了更高的通信带宽和更低的延迟,从而提升了系统的整体性能和效率。

    44510

    转载:【AI系统】分布式通信与 NVLink

    分布式通信是指将计算机系统中的多个节点连接起来,使它们能够相互通信和协作,以完成共同的任务。...算力需求大:大规模的数据和参数,使得模型无法在单机上运行和计算,这一方面要求计算硬件的不断进步,另一方面也要求 AI 框架具有分布式并行训练的能力。所以说,为了解决上述问题我们需要引入分布式并行策略。...AI 框架分布式对于模型训练来说,不管是哪一种并行策略其本质上包括将模型进行“纵向”或“横向”的切分,然后将单独切分出来的放在不同的机器上进行计算,来充分的利用计算资源。...以上我们介绍的都是软件层面的分布式策略和算法,接下来我们来看下通信的硬件上是如何实现的。通信硬件在 AI 训练中,分布式通信是至关重要的,特别是在处理大模型和海量数据时。...这两项技术的引入,为 GPU 集群和深度学习系统等应用场景带来了更高的通信带宽和更低的延迟,从而提升了系统的整体性能和效率。

    38710

    分布式系统

    随着互联网的发展,单一节点部署的方式已经无法满足需求,需要通过增加节点来线性扩展系统的负载和性能,因此系统架构也由原来的集中式架构向分布式架构转变。...分布式 分布式系统主要由以下几个特征: 分布性:分布式节点在空间上任意分布 对等性:节点没有主从之分。...数据副本冗余数据,防止数据丢失,服务副本指多个节点提供相同服务,一个节点宕机,服务仍然可用 并发性 缺乏全局时钟:分布式系统很难定义事件的先后顺序 故障总是发生 分布式环境面临的主要问题: 通信异常:分布式系统需要各个节点之间相互通信...CAP和BASE理论 为了构建一个兼顾可用性和一致性的分布式系统,诞生了CAP和BASE理论。 CAP理论 CAP理论:一个分布式系统不可能同时满足一致性、可用性和分区容错性,最多只能满足两个。...在分布式系统中,分区容错性应该是必选的,然后再在一致性和可用性中寻求平衡。

    1.1K20

    什么是分布式系统,如何学习分布式系统

    正文 虽然本人在前面也写过好几篇分布式系统相关的文章,主要包括CAP理论、分布式存储与分布式事务,但对于分布式系统,并没有一个跟清晰的概念。...分布式系统涉及到很多的技术、理论与协议,很多人也说,分布式系统是“入门容易,深入难”,我之前的学习也只算是管中窥豹,只见得其中一斑。...因此,一致希望能对分布式系统有一个更全面的认识,至少能够把分布式系统中的各个技术、理论串起来,了解他们在分布式系统分别解决什么问题,有哪些优秀的实现。...什么是分布式系统 分布式系统是由一组通过网络进行通信、为了完成共同的任务而协调工作的计算机节点组成的系统。 分布式系统的出现是为了用廉价的、普通的机器完成单个计算机无法完成的计算、存储任务。...分布式系统特性与衡量标准 透明性:使用分布式系统的用户并不关心系统是怎么实现的,也不关心读到的数据来自哪个节点。

    1.1K30

    【AI系统】AI系统架构的组成

    AI 系统组成如图所示,大致可以将 AI 系统分为以下几个具体的方向:AI 训练与推理框架AI 框架不仅仅是指如 PyTorch 等训练框架,还包括推理框架。...AI 编译与计算架构负责 AI 模型在真正运行前的编译和系统运行时的动态调度与优化。...当获取的网络模型计算图部署于单卡、多卡甚至是分布式 AI 集群的环境,运行期的框架需要对整体的计算图按照执行顺序调度算子与任务的执行、多路复用资源,做好内存等资源的分配与释放。...但是我们将在后续章节中,将会围绕核心系统软硬件,如 AI 训练和推理框架,AI 编译器,AI 芯片,部分涉及更广泛的 AI 系统生态中的重要内容如算法等展开介绍。...AI 系统生态除了以上重要的 AI 系统构成之外,随着人工智能应用越来越广泛,我们还可以看到更广泛的 AI 系统生态的构成。

    1.1K11

    分布式系统简介

    现在工作中发现大数据技术的底层还是分布式系统,那么重新拾起,总结下~ 一、分布式系统简介 分布式系统是若干独立计算机的集合,这些计算机对于用户来说就像是单个相关系统。...2、透明性   将它的进程和资源实际上在多台计算机上分布这样一个事实隐藏起来,如果一个分布式系统能够在用户和应用程序面前呈现为单个计算机系统,这样的分布式系统就称为是透明的。...位置透明性:用户无法判别资源在系统中的物理位置。 迁移透明性:如果一个分布式系统中的资源移动不会影响该资源的访问方式,就可以说这种分布式系统能够提供迁移透明性。...可移植性:如果为分布式系统A开发了某个应用程序,并且另一个分布式系统B与A具有相同的接口,该应用程序在不做任何修改的情况下在B上执行的可行度。...参考文献:《分布式系统原理与泛型》

    1.7K20

    分布式系统概述

    这就是分布式系统: 很多台计算机组成一个系统,协作运行大型的应用。 但是一个问题随之而来,那就是,在系统中增加了计算机之后,整个系统的性能也是随之增加的吗?可用性不随着系统的扩展而变化吗?未必。...这就引出了分布式系统的目标: 可扩展性(Scalability)。...如果一个用户不能访问系统,就称为不可用。 可用性也就是容错性,这展现出分布式系统相比于单机系统得天独厚的优势,一台计算机是没有容错性的,但是分布式系统可以在一堆不可靠的组件上构建一个可靠的系统。...后世的研究者为了绕开这个定理达成共识,不得不选择(1)将异步系统转换为同步系统 (2)使用随机性算法。 另一个不可能性定理为CAP定理,指导我们对于分布式系统性质的取舍。...Raft算法是目前最成功的分布式共识算法,是非拜占庭容错的,在分布式系统的下一篇文章,我将会写一下Raft算法。 参考文献 [1] Jay Kreps.

    45130

    分布式系统入门

    一、什么是分布式系统? 分布式系统是一个硬件或软件组件分布在不同的网络计算机上,彼此之间仅仅是通过消息传递进行通信和协调的系统。...首先分布式系统一定是由多个节点组成的系统,一般来说一个节点就是我们的一台计算机;然后这些节点不是孤立的,而是相互连通的;最后,这些连通的节点上部署了我们的组件,并且互相之间的操作会有协同。...二、为什么需要分布式系统? 升级单机处理能力的性价比越来越低。 大型主机的人才培养成本非常之高,大型主机操作非常复杂,对运维人员的要求非常高。 大型主机非常昂贵。...集中式的系统具有明显的单点问题。大型主机虽然在性能和稳定性方面表现卓越,但是一旦出现了故障,那么整个系统都将处于不可用状态,其后果相当严重。 三、分布式系统基础知识 ? 四、分布式系统中有哪些难点?...面对故障独立性:在分布式系统中,整个系统的一部分有问题而其他部分正常是经常发生的情况,我们称之为故障独立性。

    1.7K30

    分布式图片系统

    ,如何保证7x24小时的高可靠性服务,在这个契机下,我们推出了分布式图片系统。...,提高了系统的响应速度并避免了资源的重复执行,造成浪费,提高了系统利用率 图片数据源采用了多套方案实现,为使公司原有业务、新开发业务能快速使用分布式图片系统提供支持,减少了使用系统的复杂性 其中一种数据数据源采用了高性能的...TFS分布式图片存储系统,利用多个数据节点,产生同一份数据的多份冗余备份,提高了数据的安全性,为遇到故障时数据的快速恢复提供了支持 能够应对客户端日益变化的希望获取各种图片尺寸的诉求,执行即时压缩和图片处理算法...整体系统采用模块化划分,将系统分为各个部分,减少了系统的耦合性,增强了每个模块的独立性,整个系统采用分布式部署结构,防止单点结构的出现,为防止系统出现雪崩提供支持 项目的目的 a)....前端模块-Nginx 使用nginx自定义module,接收http请求,在自定义module的handler中调用分布式图片实现。

    1.1K30

    分布式系统基础

    分布式系统概念 What is a Distributed System? “一个分布式系统是若干个独立的计算机的集合, 但是对该系统的用户来说, 系统就像一台计算机一样。...” 两个方面的含义: •  硬件方面: 各个计算机都是自治的 •  软件方面: 用户将整个系统看作是一台计算机 分布式系统的特点 优点 – 与集中式系统相比较 1、 经济性: 高的性能/价格比...2、 性能: 能产生单个大型主机不能达到的绝对性能 3、 应用的固有的分布性, 例如: •  CSCW •  工作流 4、 可靠性高 •  多工系统的容错能力 5、 可扩充性强 •  系统演进能力...紧耦合式: 多用于并行系统 2.  松耦合式 : 多用于分布式系统

    83710

    分布式系统浅谈

    但如果要延伸到高并发场景下就必然要了解分布式系统: 分布式系统特点 分布式系统:一个硬件或软件组件分布在不同的网络计算机上,彼此之间仅仅通过消息传递进行通信和协调的系统 这是分布式系统,在不同的硬件,不同的软件...缺乏全局时钟 在分布式系统中,节点是可能反正任意位置的,而每个位置,每个节点都有自己的时间系统,因此在分布式系统中,很难定义两个事务纠结谁先谁后,原因就是因为缺乏一个全局的时钟序列进行控制,当然,现在这已经不是什么大问题了...如果交通警察是交通系统的指挥官,而zookeeper就是各个节点组成分布式系统的指挥官。...分布式系统问题 如果把分布式系统和平时的交通系统进行对比,哪怕再稳健的交通系统也会有交通事故,分布式系统也有很多需要攻克的问题,比如:通讯异常、网络分区、三态、节点故障等。 1....BASE理论: 即使无法做到强一致性,但分布式系统可以根据自己的业务特点,采用适当的方式来使系统达到最终的一致性; Basically Avaliable 基本可用 当分布式系统出现不可预见的故障时,

    91020

    谈谈分布式系统

    今天我们先寻其最重要的一个根:分布式系统。这个题目对互联网从业者来说,看着可笑,谁敢说自己不了解分布式系统啊?...然而,如果你只是躲在 load balancer 后面做些 stateless 的 service,而没有真正去面对分布式系统那种让人愉悦并忧伤着的不确定性,那么,你可能并不真正了解分布式系统,因而本文还是值得一读...所以在分布式系统里很多时候我们需要一致性,来确保某些东西是有序的,大家在同一个 page,否则这个系统会走入歧途。...分布式系统中的坑 上文中我们已经把分布式系统中最基本的要素过了一下。接下来我们踩踩坑。 坑一:network is reliable。...有机会再写本文没有展开讲的共识机制,它是分布式系统的基石。

    1.1K100

    浅谈分布式系统

    虽然它也支持持久化功能,但其主要设计是为了在内存中操作数据 为了更好的学习Redis,我们得先了解一下分布式系统,只有在分布式系统中,才能发挥Redis的“威力”,如果只在单机程序中,可以直接通过变量来存储数据...组件(Component)  一个应用里面有多个功能 每个独立的功能 指的就是一个模块/组件  1.3 分布式(Distributed)   指的就是引入多台主机/服务器,协同完成某项工作...1.4 集群(Cluster)   指的就是引入多台主机/服务器,协同完成某项工作 分布式vs集群。...通常不⽤太严格区分两者的细微概念,细究的话,分布式强调的是物理形态,即⼯作在不同服务器上并且通过⽹络通信配合完成任务;⽽集群更在意逻辑形态,即是否为了完成特定服务⽬标。 ...随着后期网站访问量增长 一台主机硬件资源(CPU,内存,硬盘,网络)有限的情况下 可以选择俩种方式 1.开源  简单粗暴 增加更多的硬件资源(CPU 硬盘 ) 但主机扩容能力也是有限的 一旦引入多台主机,就是“分布式系统

    26610

    转载:【AI系统】AI系统架构的组成

    AI 系统组成 如图所示,大致可以将 AI 系统分为以下几个具体的方向: AI 训练与推理框架 AI 框架不仅仅是指如 PyTorch 等训练框架,还包括推理框架。...AI 编译与计算架构负责 AI 模型在真正运行前的编译和系统运行时的动态调度与优化。...当获取的网络模型计算图部署于单卡、多卡甚至是分布式 AI 集群的环境,运行期的框架需要对整体的计算图按照执行顺序调度算子与任务的执行、多路复用资源,做好内存等资源的分配与释放。...但是我们将在后续章节中,将会围绕核心系统软硬件,如 AI 训练和推理框架,AI 编译器,AI 芯片,部分涉及更广泛的 AI 系统生态中的重要内容如算法等展开介绍。...AI 系统生态 除了以上重要的 AI 系统构成之外,随着人工智能应用越来越广泛,我们还可以看到更广泛的 AI 系统生态的构成。

    1.6K10

    分布式系统架构8:分布式缓存

    这是小卷对分布式系统架构学习的第11篇文章,今天了解分布式缓存的理论知识以及Redis集群。...分布式缓存也是面试常见的问题,通常面试官会问为什么要用缓存,以及用的Redis是哪种模式,用的过程中遇到哪些问题这些1....而能够保证强一致性的 ZooKeeper、Doozerd、Etcd 等框架,吞吐量比不过Redis,通常不会用作“缓存框架”,而是作为通知、协调、队列、分布式锁等使用2.透明多级缓存TMC实际开发中,同时搭配进程内缓存和分布式缓存...,查询以进程内缓存数据优先3.实现方案3.1 memcached缓存在服务端,memcached集群环境实际就是一个个memcached服务器的堆积cache的分布式主要是在客户端实现,通过客户端的路由处理来达到分布式解决方案的目的...如下是memcached客户端路由过程:3.2 Redis缓存与memcached客户端支持分布式方案不同,Redis更倾向于在服务端构建分布式存储以Redis集群模式为例,它没有中心节点,具有线性可伸缩的功能

    55310

    分布式概念-分布式系统是什么?

    什么是分布式系统呢? 从百度百科得到: 分布式系统是建立在网络之上的软件系统,拥有软件特性,所以分布式系统具有高度内聚性,和透明性。是建设于网络之上的高层软件,而不是硬件。...因为分布式系统建立在网络之上,由多个独立操作系统组成,所以分布式系统对比独立部署并运行于单一操作系统之上的软件系统来说存在要解决通信和共识等问题。...分布式系统特点 分布式系统是多个服务器通过网络互联而构建的松耦合系统,其具备以下特点: 分布式:分布式由多台计算机组成,在地域上是独立分散的,可以分散在一个单位,一个城市,一个国家,或是全球范围内...整个系统的统一功能是分散在多个节点上实现的,因而分布式系统具有数据处理的分布式特性。 自治性:分布式系统各个节点包含自己独有的cpu和内存,具备独立的处理数据能力。...分布式系统中,节点之间通信不像单机系统那样非成功即失败,我们考虑到网络不确定性带来的问题,所以分布式场景下存在“分布式三态”的概念。

    6.5K11

    【AI系统】AI系统概述与设计目标

    接下来将从不同的维度和技术层面展开 AI 系统的全景图。 AI 系统概述 AI 系统基本概念 从类比的角度理解 AI 系统:AI 时代连接硬件和上层应用的中间层软硬件基础设施。...GPU 用于 AI 模型的训练,OpenAI 等公司不断挑战更大规模的分布式模型训练。...大模型与大数据促使存储与计算层面的系统,在摩尔定律失效的大背景下,迫切需要通过并行与分布式计算的方式,扩展算力与存储的支持。 自动编译优化算法。...云原生自动分布式化。...自动分布式并行扩展到多个计算节点,面对云与集群场景,自动将 AI 任务扩展与部署,进而支撑分布式计算、弹性计算,让用户按需使用资源,也是云原生背景下,AI 系统所需要考虑和支持的。

    49510
    领券