早期时,启动一台计算机意味着要给计算机喂一条包含引导程序的纸带,或者手工使用前端面板地址/数据/控制开关来加载引导程序。尽管目前的计算机已经装备了很多工具来简化引导过程,但是这一切并没有对整个过程进行必要的简化。
计算机开机是一个神秘的过程。我们只是按了开机键,就看到屏幕上的进度条或者一行行的输出,直到我们到达登录界面。然而,计算机开机又是个异常脆弱的过程,我们满心期望的登录界面可能并不会出现,而是一个命令行或者错误信息。了解计算机开机过程有助于我们修复开机可能出现的问题。 最初始阶段 当我们打开计算机电源,计算机会自动从主板的BIOS(Basic Input/Output System)读取其中所存储的程序。这一程序通常知道一些直接连接在主板上的硬件(硬盘,网络接口,键盘,串口,并口)。现在大部分的BIOS允许你从
Linux操作系统的启动过程是一个复杂而精密的流程,涉及到多个阶段和组件。本文将对Linux启动流程进行深入探讨,并对比不同发行版之间的一些差异。我们将关注从Bootloader开始一直到用户空间初始化的整个过程。
芯片复位后,将在异常向量表中复位向量的位置开始执行。复位操作的代码必须做以下事情:
我们知道启动引导程序(Boot Loader,也就是 GRUB)会在启动过程中加载内核,之后内核才能取代 BIOS 接管启动过程。如果没有启动引导程,那么内核是不能被加载的。
嵌入式系统变得越来越复杂, 它们的软件也反映了这种复杂性的增加。 为了支持新的特性和修复,很有必要让嵌入式系统上的软件 能够以绝对可靠的方式更新。 在基于linux的系统上,我们可以在大多数情况下找到以下元素:
每次打开 Linux PC 时,它都会经历一系列阶段,然后最终显示提示输入用户名或密码的登录屏幕。每个 Linux 发行版在典型的启动过程中都会经历 4 个不同的阶段。 每次打开 Linux PC 时,它都会经历一系列阶段,然后最终显示提示输入用户名或密码的登录屏幕。每个 Linux 发行版在典型的启动过程中都会经历 4 个不同的阶段。 用户登录提示 在本指南中,我们将重点介绍 Linux 操作系统从开机到登录的各个步骤。请注意,本指南仅考虑了当前使用的GRUB2引导加载程序和systemdinit 绝
为什么会写这样一篇“无效水文”,我想是由于我的这样一种强迫症,对于任何的学习,在不理解原理,无法把他与我的已知知识架构产生联系的时候,我会本能地拒绝这种知识,所以由于这种偏执,很多情况下拖慢了自己的进度,因为很多时候无法有效收集到有用的资料,软件实训的时候,老师只会丢给一个配置文件,然后在此基础上做一些修改开发,可以除了可以勉强做一个垃圾出来,没有任何意义。就连再去做一个垃圾的能力都没有。这种情况直到毕业我才感觉无法再继续这样的生活了,于是开始大量学习,阅读专业书籍。这次就想对这些原本困扰我的东西进行一次小的抛砖引玉式的总结,当然也是把别人已经写过的一些文章综合一下,让入门的人对此好奇的人产生初步印象。 总之,人生没有白走的路。五年之前你正在梦想你今天的生活。 还有,当我们在经历冬季的时候,新西兰正被春风吹拂。所以做自己认为对的事情吧。
hexdump命令一般用来查看“二进制”文件的十六进制编码,但实际上它能查看任何文件,而不只限于二进制文件。
Linux 内核 初始化 时 , 需要进行内存分配 , 启动阶段的 内存分配 与 运行时的 内存分配 机制不同 ;
接上一篇BIOS启动,BIOS完成了基础的硬件检测和硬件的中断向量表的初始化,然后BIOS找到MBR并且把MBR加载在内存中,跳转到该位置。加载的位置在内存中的0x7C00,至于为什么是这个位置,主要是因为历史的原因吧,最初的内存只有32K,历史选择了0x7C00(31k)。
电脑启动后,CPU逻辑电路被设计为只能运行内存中的程序,没有能力直接运行存在于软盘或硬盘中的操作系统,如果想要运行,必须要加载到内存(RAM)中。
本篇文中重点为大家讲解一下CentOS 7 引导过程与服务管理,有需要的小伙伴可以参考一下。
进行硬件初始化、POST(Power-On Self-Test)自检,检查设备的可用性。
计算机开机是一个神秘的过程。我们只是按了开机键,就看到屏幕上的进度条或者一行行的输出,直到我们到达登录界面。然而,计算机开机又是个异常脆弱的过程,我们满心期望的登录界面可能并不会出现,而是一个命令行或者错误信息。了解计算机开机过程有助于我们修复开机可能出现的问题。
大约是在2000年的时候,老码农还很年轻,当时希望将Linux 作为手机的操作系统, 于是才有了进行内核裁剪的想法并辅助实践,效果尚好,已经能在PDA上执行手机的功能了。一晃20多年过去了,Linux 已经有了太大的变化,内核裁剪的技术和方式也有了较大的不同。
更改或编辑内核启动参数非常重要,当您想要修复在引导过程中导致错误,测试新功能,激活其他驱动程序或禁用系统上的功能的问题。 这些参数作为文本存储在引导加载程序的配置文件中,内核在“init”过程中解析。 要确定系统上次启动时使用的参数,应在终端上输入以下内容:
本文介绍了一种名为长短距离循环更新(LRRU)网络的轻量级深度网络框架,用于深度补全。深度补全是指从稀疏的距离测量估计密集的深度图的过程。现有的深度学习方法使用参数众多的大型网络进行深度补全,导致计算复杂度高,限制了实际应用的可能性。相比之下,本文提出的LRRU网络首先利用学习到的空间变体核将稀疏输入填充以获得初始深度图,然后通过迭代更新过程灵活地更新深度图。迭代更新过程是内容自适应的,可以从RGB图像和待更新的深度图中学习到核权重。初始深度图提供了粗糙但完整的场景深度信息,有助于减轻直接从稀疏数据回归密集深度的负担。实验证明,LRRU网络在减少计算复杂度的同时实现了最先进的性能,更适用于深度补全任务。
软件运行时输入单元输入内容,进入内存,CPU由控制单元和算术逻辑单元组成,控制单元控制算术逻辑单元从内存中读取数据,内存和外部存储设备进行交互,运算完毕以后输出到输出单元,完成软件的运行。
今天给大侠带来FPGA Xilinx Zynq 系列第三十七篇,开启第二十四章,带来Linux 启动相关内容,本篇为本系列最后一篇,本篇内容目录简介如下:
BIOS (Basic Input/Output System) 是一组固件,通常存储在计算机主板上的芯片中。当计算机启动时,BIOS会自动运行,并通过POST (Power-On Self-Test) 对计算机进行自检,以确保硬件设备正常工作。在自检完成后,BIOS会寻找可引导的设备,通常是硬盘或光盘驱动器。如果找到了可引导设备,则BIOS将把控制权交给该设备中的引导程序。
#---------- ADDED BY BOOTADM - DO NOT EDIT ---------- title Oracle Solaris 10 8/11 s10x_u10wos_17b X86 findroot (rootfs0,2,a) kernel /platform/i86pc/multiboot module /platform/i86pc/boot_archive #---------------------END BOOTADM-------------------- #---------- ADDED BY BOOTADM - DO NOT EDIT ---------- title Solaris failsafe findroot (rootfs0,2,a) kernel /boot/multiboot kernel/unix -s module /boot/x86.miniroot-safe #---------------------END BOOTADM--------------------
You now know the physical and logical structure of a Linux system, what the kernel is, and how to work with processes. This chapter will teach you how the kernel starts— or boots. In other words, you’ll learn how the kernel moves into memory up to the point where the first user process starts.
对Android最初的启动过程一直没有清晰的认识,看到一篇好文,转载一下: http://blog.jobbole.com/67931/ http://www.cnblogs.com/pengdonglin137/articles/5822828.html http://kpbird.blogspot.in/2012/11/in-depth-android-boot-sequence-process.html
一、Linux内核概览 Linux是一个一体化内核(monolithic kernel)系统。 设备驱动程序可以完全访问硬件。 Linux内的设备驱动程序可以方便地以模块化(modularize)的形式设置,并在系统运行期间可直接装载或卸载。 1. linux内核 linux操作系统是一个用来和硬件打交道并为用户程序提供一个有限服务集的低级支撑软件。 一个计算机系统是一个硬件和软件的共生体,它们互相依赖,不可分割。 计算机的硬件,含有外围设备、处理器、内存、硬盘和其他的电子设备组成计算机的发动机。 但是没有软件来操作和控制它,自身是不能工作的。 完成这个控制工作的软件就称为操作系统,在Linux的术语中被称为“内核”,也可以称为“核心”。 Linux内核的主要模块(或组件)分以下几个部分: . 进程管理(process management) . 定时器(timer) . 中断管理(interrupt management) . 内存管理(memory management) . 模块管理(module management) . 虚拟文件系统接口(VFS layer) . 文件系统(file system) . 设备驱动程序(device driver) . 进程间通信(inter-process communication) . 网络管理(network management . 系统启动(system init)等操作系统功能的实现。 2. linux内核版本号 Linux内核使用三种不同的版本编号方式。 . 第一种方式用于1.0版本之前(包括1.0)。 第一个版本是0.01,紧接着是0.02、0.03、0.10、0.11、0.12、0.95、0.96、0.97、0.98、0.99和之后的1.0。 . 第二种方式用于1.0之后到2.6,数字由三部分“A.B.C”,A代表主版本号,B代表次主版本号,C代表较小的末版本号。 只有在内核发生很大变化时(历史上只发生过两次,1994年的1.0,1996年的2.0),A才变化。 可以通过数字B来判断Linux是否稳定,偶数的B代表稳定版,奇数的B代表开发版。C代表一些bug修复,安全更新,新特性和驱动的次数。 以版本2.4.0为例,2代表主版本号,4代表次版本号,0代表改动较小的末版本号。 在版本号中,序号的第二位为偶数的版本表明这是一个可以使用的稳定版本,如2.2.5; 而序号的第二位为奇数的版本一般有一些新的东西加入,是个不一定很稳定的测试版本,如2.3.1。 这样稳定版本来源于上一个测试版升级版本号,而一个稳定版本发展到完全成熟后就不再发展。 . 第三种方式从2004年2.6.0版本开始,使用一种“time-based”的方式。 3.0版本之前,是一种“A.B.C.D”的格式。 七年里,前两个数字A.B即“2.6”保持不变,C随着新版本的发布而增加,D代表一些bug修复,安全更新,添加新特性和驱动的次数。 3.0版本之后是“A.B.C”格式,B随着新版本的发布而增加,C代表一些bug修复,安全更新,新特性和驱动的次数。 第三种方式中不使用偶数代表稳定版,奇数代表开发版这样的命名方式。 举个例子:3.7.0代表的不是开发版,而是稳定版! linux内核升级时间图谱如下:
为了不打断文章的整体思路,有些专业术语没有进行解释,但是在后续我实践编写小的操作系统时会根据用到的东西为大家一一补全。
本文从Linux操作系统的引导加载程序(对个人电脑而言通常是LILO)开始,介绍Linux开机引导的步骤。
硬盘扇区如上图划分,在系统扇区中,存在分区启动扇区(PBR),在MBR分区中存在主启动扇区。
ERROR: Unable to find the kernel source tree for the currently running kernel. Please make sure you have installed the kernel source files for your kernel and that they are properly configured; on Red Hat Linux systems, for example, be sure you have the 'kernel-source' or 'kernel-devel' RPM installed. If you know the correct kernel source files are installed, you may specify the kernel source path with the '--kernel-source-path' command line option.
本文将详细介绍Android系统的启动流程,并给出实际应用案例。理解Android启动流程对于开发者来说是十分重要的。让我们开始吧!
GRUB2(GRand Unified Bootloader 2)是现代计算机系统中广泛使用的引导加载器。它继承了GRUB的灵活性和强大功能,为用户提供了一个高度可配置和扩展的平台,用于引导多种操作系统。本文将深入探讨GRUB2的工作原理、配置方法以及常见应用场景,帮助读者更好地理解和使用GRUB2。
一、Linux内核的组成 相关概念: Linux系统的组成部分:内核+根文件系统 内核:进程管理、内存管理、网络协议栈、文件系统、驱动程序。 IPC(Inter-Process Communication进程间通信):就是指多个进程之间相互通信,交换信息的方法。Linux IPC基本上都是从Unix平台上继承而来的。主要包括最初的Unix IPC,System V IPC以及基于Socket的IPC。另外,Linux也支持POSIX IPC。 运行中的系统环境可分为两层:内核空间、用户空间
这篇文章我们来聊聊 「Laravel 生命周期」 这个主题。虽然网络上已经有很多关于这个主题的探讨,但这个主题依然值得我们去研究和学习。
之前GitHub上有人整理过一个叫Awesome-Fuzzing的资料,整理了关于Fuzzing技术的电子书、视频、工具、教程以及用于练习的漏洞程序。整体上不错,但工具上还是不够全,有些不错且希望阅读代码学习的工具,发现未在其中,因此重新整理出下面这一份资源,其中有些还曾二次开发过,有些是还未来得及学习的,写出来权且当作学习计划。
一、Linux内核的组成 相关概念: Linux系统的组成部分:内核+根文件系统 内核:进程管理、内存管理、网络协议栈、文件系统、驱动程序。 IPC(Inter-Process Communication进程间通信):就是指多个进程之间相互通信,交换信息的方法。Linux IPC基本上都是从Unix平台上继承而来的。主要包括最初的Unix IPC,System V IPC以及基于Socket的IPC。另外,Linux也支持POSIX IPC。 运行中的系统环境可分为两层:内核空间、用
服务是什么?先来看一下服务的定义:一台主机上提供的、运行的各种功能统称为服务。有本机内服务,如:at,cron,有对外的网络服务,如:web、ftp等,又称为业务、应用。下面我们来分析一下Linux中服务的具体管理。
本文适用于CentOS 6.4, CentOS 6.5,估计也适用于其他Linux发行版。
本指南旨在说明如何尽可能地加强Linux的安全性和隐私性,并且不限于任何特定的指南。
uboot默认是支持执行应用程序的,就像引导内核一样,我们也可以自己写一个应用程序,让uboot启动时引导。
此软件包仍在开发中,但大多数对1.0.0的API调用已完成。如果发现任何错误,请在GitHub上提交问题或诉求。
但是有时候,驱动不够新,比如14.04用的是340.98版本,如果手动安装驱动可以参考官网指南。
我发现Linux系统在启动过程中会出现一些故障,导致系统无法正常启动,我在这里写了几个应用单用户模式、GRUB命令操作、Linux救援模式的故障修复案例帮助大家了解此类问题的解决。
作者:bobyzhang,腾讯 IEG 运营开发工程师 0. 故事的开始 0.1 为什么和做什么 最近家里买了对音响,我需要一个数字播放器。一凡研究后我看上了 volumio(https://volumio.org/) 这是一个基于 Debian 二次开发的 HIFI 播放器系统,可以运行下 x86 和树莓派上。 我打算让 volumio 运行在我 2009 年购买的老爷机笔记本上,也让它发挥一点余温热。正常操作是将 volumio 的系统镜像刷到 U 盘上,连接电脑后使用 U 盘启动系统即可。但是家
领取专属 10元无门槛券
手把手带您无忧上云