首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PyTorch入门笔记-增删张量的维度

比如一张 大小的灰度图片保存为形状为 的张量,在张量的头部增加一个长度为 1 的新维度,定义为通道数维度,此时张量的形状为 。 “图片张量的形状有两种约定: 通道在后的约定。...PyTorch 将通道维度放在前面: ” 使用 torch.unsqueeze(input, dim) 可以在指定的 dim 维度前插入一个长度为 1 的新维度。...通过上图可以看出,无论 dim 参数值是正整数还是负整数,其具体范围都和输入张量的维度有关。...对于输入张量为 的图片张量而言,张量的维度为 4,其 dim 参数的取值范围为 ,对比不同维度的输入张量: 输入张量的维度 input.dim() = 2 时,dim 参数的取值范围为 输入张量的维度...input.dim() = 3 时,dim 参数的取值范围为 得到 dim 参数的取值范围为 ,其中 input.dim() 为输入张量的维度。

4.9K30

CNN中张量的输入形状和特征图 | Pytorch系列(三)

卷积神经网络 在这个神经网络编程系列中,我们正在努力构建卷积神经网络(CNN),所以让我们看看在CNN中的张量输入。 ? 在前两篇文章中,我们介绍了张量和张量的基本属性——阶、轴和形状。...我现在要做的是把阶、轴和形状的概念用在一个实际的例子中。为此,我们将把图像输入看作CNN的张量。...注意,张量的形状 编码了关于张量轴、阶和索引的所有相关信息,因此我们将在示例中考虑该形状,这将使我们能够计算出其他值。下面开始详细讲解。 CNN输入的形状 CNN输入的形状通常长度为4。...对于图像而言,原始数据以像素的形式出现,像素由数字表示,并使用两个维尺寸(高度和宽度)进行排列。 图片的高和宽 为了表示两个维度,我们需要两个轴。 ? 图像的高度和宽度在最后两个轴上表示。...假设对于给定的张量,我们具有以下形状[3,1,28,28]。使用该形状,我们可以确定我们有这个批次是含有三张图片。

3.8K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    nn.functional和nn.Module

    Pytorch的低阶API主要包括张量操作,动态计算图和自动微分。 如果把模型比作一个房子,那么低阶API就是【模型之砖】。...前面几章我们对低阶API已经有了一个整体的认识,本章我们将重点详细介绍张量操作和动态计算图。 张量的操作主要包括张量的结构操作和张量的数学运算。...张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。 张量数学运算主要有:标量运算,向量运算,矩阵运算。另外我们会介绍张量运算的广播机制。...利用这些张量的API我们可以构建出神经网络相关的组件(如激活函数,模型层,损失函数)。 Pytorch和神经网络相关的功能组件大多都封装在 torch.nn模块下。...二,使用nn.Module来管理参数 在Pytorch中,模型的参数是需要被优化器训练的,因此,通常要设置参数为 requires_grad = True 的张量。

    99920

    PyTorch 最新版发布:API 变动,增加新特征,多项运算和加载速度提升

    【新智元导读】PyTorch 发布了最新版,API 有一些变动,增加了一系列新的特征,多项运算或加载速度提升,而且修改了大量bug。官方文档也提供了一些示例。...负维将索引上个维度的张量。 例如: ? 这里,由于x具有3维,并且dim = -1,因此最后一个维度,即 dim = 3 被采用来得到平均值。 具有维度参数的函数有: ?...一种新的混合矩阵乘法 hspmm,将稀疏矩阵与密集矩阵相乘,并以混合张量的形式(即1个稀疏维度,1个密集维度)返回1个矩阵。 几个CPU稀疏函数具有更高效的实现。...常用的函数 expand 移到 C,在较小的模型中具有更好的性能。.../pytorch/releases

    1.8K70

    pytorch view(): argument size (position 1) must be tuple of ints, not Tensor

    pytorch view()函数错误解决在使用pytorch进行深度学习任务时,经常会用到​​view()​​函数来改变张量的形状(shape)。...我们通过​​features.size(0)​​获取批处理大小,并将其与​​-1​​组合使用,表示自动计算展平后的维度大小。...使用​​​view()​​函数可以进行以下操作:改变张量的维数和大小:我们可以通过​​view()​​函数增加或减少张量的维数,以及改变每个维度的大小。...展平多维张量:​​view()​​函数可以将多维张量展平成一维张量,将多维的元素排列成一维的顺序。收缩和扩展维度:我们可以使用​​view()​​函数在张量的某些维度上收缩或扩展维度的大小。...shape​​应该是一个与原始张量具有相同元素数量的形状。​​*​​是将​​shape​​参数展开的语法。

    43920

    PyTorch和Tensorflow版本更新点

    为了解决这个问题,请更新任何推理客户端,以发送具有训练器代码所使用的实际输入和输出密钥的请求,或者相反地,更新训练器代码以分别命名输入和输出张量为'inputs'和 'outputs'。...PyTorch广播语义密切跟随numpy式广播。如果你熟悉数字广播,可以按照之前流程执行。 一般语义学 如果以下规则成立,则两个张量是“可广播的”: •每个张量具有至少一个维度。...•当从尺寸大小开始迭代时,从尾部维度开始,尺寸大小必须相等,其中一个为1,或其中一个不存在。 例如: ?...•然后,对于每个维度大小,生成的维度大小是沿该维度的x和y的大小的最大值。...PyTorch现在支持广播。 “一维”点行为被认为是不推荐的,并且在张量不可广播但具有相同数量的元素的情况下会产生Python警告。 例如: ?

    2.7K50

    pytorch view(): argument size (position 1) must be tuple of ints, not Tensor

    当我们使用PyTorch进行深度学习任务时,常常需要对输入数据进行reshape操作以适应模型的输入要求。下面以图像分类任务为例,结合实际应用场景给出示例代码。...view()​​​函数是PyTorch中的一个张量方法,用于改变张量的形状。它的作用类似于Numpy中的​​reshape()​​​函数,可以用来调整张量的维度和大小,而不改变张量中的元素。 ​​​...*size​​​表示接受任意数量的参数,可以灵活地改变张量的形状。 ​​​view()​​函数的工作原理如下:首先,它根据提供的新形状来确定新的维度大小,以及元素在新张量中的排布顺序。...然后,它使用这些信息对原始张量进行重新排列,生成一个新的张量。最后,它返回新的张量,将原始张量的数据复制到新的张量中(如果原始张量和新的张量的大小不匹配,会引发错误)。...在第二次调用​​view()​​​函数时,使用了​​-1​​​作为参数,表示根据其他维度的大小自动推断,从而避免了手动计算新的维度大小。

    30820

    PyTorch 重磅更新,不只是支持 Windows

    ReduceLROnPlateau 可以进行序列化#5300 添加选项以清除 CPU上的非正常数字#5294 新版本中 PyTorch 将公开 conv1d,conv2d 和 conv3d 所对应的输入和权重的变化情况...,#5971,#5819 在任何输入尺寸未对齐的情况下修复 torch.fft #6118 改进 CUDA btrifact 的错误消息#5644 未请求 torch.symeig 时,为特征向量张量返回零...#4182 使用 numpy 数组,修复创建 CUDA 张量时的崩溃#5850 在某些操作系统上,修复多处理进程中的空张量共享问题#6229 autograd 还原 allow_unused 功能:当可微分输入未被使用或无法访问时抛出错误...这导致在某些输入不需要 _grad 的操作在反向传播过程中发生崩溃#4812 修复 torch.autograd.profiler 中的 nvprof 解析问题#5840 nn 层 仅支持在特定维度中为自适应池指定大小...模块的错误消息#5701 检查输入的维度与目标是否匹配,而不是与一些损失函数的元素数量匹配#5085 修复 torch.diag 操作在反向传播过程所返回方形渐变与非方形输入#4538 修复卷积类型不匹配的错误消息

    1.7K20

    PyTorch 的这些更新,你都知道吗?

    ReduceLROnPlateau 可以进行序列化#5300 添加选项以清除 CPU上的非正常数字#5294 新版本中 PyTorch 将公开 conv1d,conv2d 和 conv3d 所对应的输入和权重的变化情况...,#5971,#5819 在任何输入尺寸未对齐的情况下修复 torch.fft #6118 改进 CUDA btrifact 的错误消息#5644 未请求 torch.symeig 时,为特征向量张量返回零...#4182 使用 numpy 数组,修复创建 CUDA 张量时的崩溃#5850 在某些操作系统上,修复多处理进程中的空张量共享问题#6229 autograd 还原 allow_unused 功能:当可微分输入未被使用或无法访问时抛出错误...这导致在某些输入不需要 _grad 的操作在反向传播过程中发生崩溃#4812 修复 torch.autograd.profiler 中的 nvprof 解析问题#5840 nn 层 仅支持在特定维度中为自适应池指定大小...模块的错误消息#5701 检查输入的维度与目标是否匹配,而不是与一些损失函数的元素数量匹配#5085 修复 torch.diag 操作在反向传播过程所返回方形渐变与非方形输入#4538 修复卷积类型不匹配的错误消息

    6K40

    解决问题使用invalid argument 0: Sizes of tensors must match except in dimension 0. Got

    张量的尺寸是指张量在每个维度上的大小。在深度学习和机器学习领域中,张量是一种多维数组或矩阵的概念,用于存储和表示数据。张量的尺寸可以用来描述张量在每个维度上的大小以及它们之间的关系。...在PyTorch中,张量的尺寸通常以元组的形式表示。例如,一维张量的尺寸可以表示为(n,),其中n是张量在该维度上的大小。...二维张量的尺寸通常表示为(m, n),其中m表示张量在行方向上的大小,n表示在列方向上的大小。类似地,三维张量的尺寸可以表示为(p, m, n),其中p表示张量在第一个维度上的大小。...张量的尺寸对于许多深度学习任务非常重要,例如构建神经网络模型、调整输入数据的形状和大小、计算损失函数等。在神经网络中,各个层之间的输入和输出张量的尺寸必须匹配,以确保各层之间的连接正确。...这可以通过使用PyTorch提供的相关函数和方法来完成,例如size()方法用于查询张量的尺寸,view()方法用于调整张量的形状。 总而言之,张量的尺寸是指描述张量在每个维度上大小的元组形式。

    1.1K10

    【完美解决方案】RuntimeError: shape ‘‘ is invalid for input of size 10

    因为张量重塑时,输入张量的总元素数必须等于输出张量的总元素数。在本例中,[2, 3]的总元素数是 2 * 3 = 6,而输入的大小是10,所以无法进行重塑。 1....灵活使用-1:在张量重塑时,可以使用-1作为某一维度,让框架自动推断该维度的大小。...解决方法 2.1 检查张量的大小 解决方法1:首先,你需要确保输入数据的大小能够匹配目标形状。可以通过tensor.size()或tensor.shape来检查输入张量的形状。...A: 这意味着即使你使用了-1,框架仍然无法推断出合适的维度。这种情况通常发生在输入数据的大小本身有问题。例如,输入的总大小无法被目标维度整除。 Q: 什么时候应该使用reshape而不是view?...总结 RuntimeError: shape '[2, 3]' is invalid for input of size 10 是一个常见的张量形状错误,它主要与输入和目标形状的大小不匹配有关。

    34310

    【深度学习】Pytorch教程(八):PyTorch数据结构:2、张量的数学运算(6):高维张量:乘法、卷积(conv2d~四维张量;conv3d~五维张量)

    在PyTorch中,可以使用size()方法获取张量的维度信息,使用dim()方法获取张量的轴数。 2....数据类型(Data Types)   PyTorch中的张量可以具有不同的数据类型: torch.float32或torch.float:32位浮点数张量。...这意味着两个张量的前面维度需要匹配,并且其中一个张量的维度需要和另一个张量的倒数第二个维度相匹配。...大小匹配:卷积核的大小必须小于或等于输入张量的大小( 3<32 ),否则无法在输入张量上进行卷积操作。...卷积参数: 步长:卷积时的步长参数需要考虑输入张量的大小; 填充:填充参数可以用来控制卷积操作的输出尺寸,用于保持输入和输出的尺寸一致。

    27610
    领券