首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

交叉验证,K折交叉验证的偏差和方差分析

交叉验证交叉验证是一种通过估计模型的泛化误差,从而进行模型选择的方法。没有任何假定前提,具有应用的普遍性,操作简便, 是一种行之有效的模型选择方法。1....交叉验证的产生人们发现用同一数据集,既进行训练,又进行模型误差估计,对误差估计的很不准确,这就是所说的模型误差估计的乐观性。为了克服这个问题,提出了交叉验证。...交叉验证方法留一交叉验证(leave-one-out):每次从个数为N的样本集中,取出一个样本作为验证集,剩下的N-1个作为训练集,重复进行N次。最后平均N个结果作为泛化误差估计。...相对来说,留一交叉验证,每次只留下一个作为验证集,其余数据进行训练,产生泛化误差估计结果相对 真值偏差较小。很多文献表明留一交叉验证在回归下的泛化误差估计是渐进无偏的。...留P交叉验证,取决于P的大小,P较小时,等同于留一交叉验证的情况。P较大,会产生较大的偏差,不可忽略。K折交叉验证,同样取决于K的大小。K较大时,类似留一交叉验证;K较小时,会产生不可忽略的偏差。

3.9K30

卷积神经网络的卷积层_卷积神经网络详解

weight中,并生成一个bias; 上图详细描述了BN层计算原理以及如何融合卷积层和BN层,这里进行验证: 定义三个模型: 定义模型1 : 一层卷积层和一层BN层网络 import numpy as...这里模型1为conv+bn,这里对卷积层和BN层进行了初始化,特别是BN层的移动平均和方差初始化,因为这个数值默认初始化是0,是通过训练迭代出来的; 模型2为conv,并且我们用模型1的卷层权重去初始化模型...2; 模型3为conv,这里我们合并模型1的卷层和BN层,然后用合并后的参数初始化模型3; 如果计算没问题的话,那么相同输入情况下,模型2输出手动计算BN后,应该和模型1输出一样,模型1的卷积和bn合并后...这里手动计算模型2的卷积过程,然后和模型2输出进行对比。...合并Conv和BN层 在开头图中详细说明了如何合并卷积和BN层,这里把模型1的两层合并为一层,也就是模型3.

1.6K21
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用交叉验证改善模型的预测表现-着重k重交叉验证

    机器学习技术在应用之前使用“训练+检验”的模式(通常被称作”交叉验证“)。 预测模型为何无法保持稳定?...在机器学习中,对偏差和方差的权衡是机器学习理论着重解决的问题。 什么是交叉验证? 交叉验证意味着需要保留一个样本数据集,不用来训练模型。在最终完成模型前,用这个数据集验证模型。...交叉验证包含以下步骤: 保留一个样本数据集。--测试集 用剩余部分训练模型。--训练集 用保留的数据集(测试集)验证模型。 这样做有助于了解模型的有效性。...如果当前的模型在此数据集也表现良好,那就带着你的模型继续前进吧!它棒极了! 交叉验证的常用方法是什么? 交叉验证有很多方法。下面介绍其中几种: 1....重复这个过程,直到每“层”数据都作过验证集。 记录下的 k 个误差的平均值,被称为交叉验证误差(cross-validation error)。可以被用做衡量模型表现的标准。

    1.6K60

    『深度思考』为什么卷积神经网络具有平移不变性

    为什么卷积神经网络具有平移不变性 简单地说,卷积+最大池化约等于平移不变性。 卷积:简单地说,图像经过平移,相应的特征图上的表达也是平移的。 下图只是一个为了说明这个问题的例子。...输入图像的左下角有一个人脸,经过卷积,人脸的特征(眼睛,鼻子)也位于特征图的左下角。 假如人脸特征在图像的左上角,那么卷积后对应的特征也在特征图的左上角。...在神经网络中,卷积被定义为不同位置的特征检测器,也就意味着,无论目标出现在图像中的哪个位置,它都会检测到同样的这些特征,输出同样的响应。...比如人脸被移动到了图像左下角,卷积核直到移动到左下角的位置才会检测到它的特征。...总结 卷积的平移不变性就是通过卷积+池化以后不管某一特征移动了位置,总可以检测出来输入到下一层中,又由于全连接是加权求和计算,被CNN激活的特征又可以传导到下一层中。

    85110

    交叉验证_验证的三种方法

    ---- 为什么用交叉验证法? 交叉验证用于评估模型的预测性能,尤其是训练好的模型在新数据上的表现,可以在一定程度上减小过拟合。 还可以从有限的数据中获取尽可能多的有效信息。...---- 交叉验证用途?...(过拟合的泛化能力差) ---- 交叉验证的方法? 1....2. k折交叉验证(k-fold cross validation) k折交叉验证是对留出法的改进, k 折交叉验证通过对 k 个不同分组训练的结果进行平均来减少方差,因此模型的性能对数据的划分就不那么敏感...但是训练复杂度增加了,因为模型的数量与原始数据样本数量相同。 一般在数据缺乏时使用。 此外: 多次 k 折交叉验证再求均值,例如:10 次 10 折交叉验证,以求更精确一点。

    2.6K10

    卷积神经网络(五) ——面部验证与神经风格转换

    卷积神经网络(五) ——面部验证与神经风格转换 (原创内容,转载请注明来源,谢谢) 一、概述 本文主要讨论面部验证和神经风格转换两种技术,都是CNN的实际应用。...二、面部验证 1、人脸识别与面部验证 总体来说,面部验证是人脸识别的基础。面部验证相对而言数据量小,准确度要求也没有那么高。 ?...由于数据量太少,无法进行神经网络的训练,因此面部验证用了称为一次学习的方式,核心思想即比对两张图片的相似性。 记d(图1, 图2) 为两张图的差异值,当d小于等于某个阈值,则认为这两张图是同一个人。...当一幅图片中,出现条纹的地方都是黄色的,如果另一幅图片也具有这样的性质,则可以认为两幅图片的风格比较相似。而处理条纹的信道和处理颜色的信道通常不在一个信道中。...四、不同维度的卷积计算 二维卷积已经很熟悉了,这里可以推广到一维和三维,比较简单不再赘述,直接附图。 ? ? ——written by linhxx 2018.03.14

    68960

    交叉验证的3种方法

    利用验证集来评估模型效果,调整超参数的过程称之为交叉验证,有以下3种常用的策略 1....3. k fold cross validation 称之为K折交叉验证,K指定了迭代的次数,示意如下 ? 将数据集均匀划分为k个子集,每次迭代,使用一个子集作为测试集,其他的作为训练集。...LOOCV也可以看做是K折交叉验证的一个特例,K等于样本总数N。对于得到的k个模型,从其中挑选误差最小的作为最终的模型。 对于机器学习而言,训练集上的误差叫做训练误差,测试集上的误差叫做泛化误差。...交叉验证的方法同时评估训练误差和泛化误差,可以有效避免过拟合。 ·end· —如果喜欢,快分享给你的朋友们吧— 原创不易,欢迎收藏,点赞,转发!...生信知识浩瀚如海,在生信学习的道路上,让我们一起并肩作战! 本公众号深耕耘生信领域多年,具有丰富的数据分析经验,致力于提供真正有价值的数据分析服务,擅长个性化分析,欢迎有需要的老师和同学前来咨询。

    1.5K10

    机器学习中的交叉验证思想

    这种思想就称为交叉验证(Cross Validation)。...通常我们使用的交叉验证方法有下面几种: 简单交叉验证(simple cross validation) 简单交叉验证当然很简单了,就是把整个训练集随机分为两部分(通常是70%的训练集,30%的评估集)。...其实这也不算是交叉验证了,因为他的训练集并没有交叉。 通常情况下我们是直接选取前70%为训练集,但是如果训练数据是按照一定规律排放的,那么选取数据的时候就要先打乱顺序,或者按照一定的随机方法选取数据。...否则训练集就不一定具有一般性了。...这个方法一方面保证了数据充分被使用训练了,避免了数据的浪费;另一方面也互相进行了验证,达到了交叉验证的效果,不过计算代价还是有点高。

    83420

    时间序列的蒙特卡罗交叉验证

    交叉验证应用于时间序列需要注意是要防止泄漏和获得可靠的性能估计本文将介绍蒙特卡洛交叉验证。这是一种流行的TimeSeriesSplits方法的替代方法。...时间序列交叉验证 TimeSeriesSplit通常是时间序列数据进行交叉验证的首选方法。下图1说明了该方法的操作方式。可用的时间序列被分成几个大小相等的折叠。...使用TimeSeriesSplit进行交叉验证的主要好处如下: 它保持了观察的顺序。这个问题在有序数据集(如时间序列)中非常重要。 它生成了很多拆分 。几次拆分后可以获得更稳健的评估。...因此,初始迭代可能不能代表完整的时间序列。这个问题会影响性能估计。 那么如何解决这个问题? 蒙特卡罗交叉验证 蒙特卡罗交叉验证(MonteCarloCV)是一种可以用于时间序列的方法。...也就是说,在每次迭代中,60%的数据被用于训练。10%的观察结果用于验证。

    1.2K40

    几种交叉验证(cross validation)方式的比较

    : 原始采用的train_test_split方法,数据划分具有偶然性;交叉验证通过多次划分,大大降低了这种由一次随机划分带来的偶然性,同时通过多次划分,多次训练,模型也能遇到各种各样的数据,从而提高其泛化能力...train_test_split,默认训练集、测试集比例为3:1,而对交叉验证来说,如果是5折交叉验证,训练集比测试集为4:1;10折交叉验证训练集比测试集为9:1。数据量越大,模型准确率越高!...为了避免这种情况,又出现了其他的各种交叉验证方式。...Stratified k-fold cross validation 分层交叉验证(Stratified k-fold cross validation):首先它属于交叉验证类型,分层的意思是说在每一折中都保持着原始数据中各个类别的比例关系...,比如说:原始数据有3类,比例为1:2:1,采用3折分层交叉验证,那么划分的3折中,每一折中的数据类别保持着1:2:1的比例,这样的验证结果更加可信。

    5.7K80

    pytorch卷积神经网络-卷积的定义(下)

    为更好地理解卷积层,以两张图片对比所示: ? 左侧若采用全连接方式进行学习,则参数量很大。而右侧只提取局部特征(对应点的周边的一些属性)进行学习,可以极大地减少参数量。...我们将这种相乘并累加的操作叫为卷积操作。 这种卷积操作在信号处理中是有明确定义的, ? 这种卷积操作在图像处理领域中有诸多应用, Sharpen(锐化操作) ?...用5*5的核进行卷积计算 这样生成的feature map的size与原图一样,戴氏特征更加突出 相应的也可以进行模糊处理 Blur(模糊处理) ? 模糊处理即取周围点进行相乘累加。...那么经过了卷积运算后,生成的feature map为 ? 每次扫描使用不同的核,会得到不同的feature map。

    51610

    pytorch卷积神经网络-卷积的定义(上)

    计算机视觉是深度学习的重要组成部分,而卷积神经网路是计算机的主要研究方向。 在了解卷积神经网络前,我们有必要了解图片的构成。以下张图片为例 ?...对于这类位置相关性的矩阵pytorch是如何处理的? 首先对于全连接层神经网络,将该问题看做数字识别问题时,可以构建出的全连接网络如下。 ?...该全连接型神经网络有输入层、4个隐藏层、带十个节点的输出层。 那么假设数据集图片为28*28型的,将其打平为784。而中间节点全选择为256节点.输出为10个节点。...因此科学家们依据此特点提出了卷积神经网络模型如下图所示: ? 每次先感受一个个可移动的小方块,然后再感受大的区间。相应的不是整个28*28的大图片,而是3*3的小图片。...后续科学家们又提出了权值共享的概念,即每个小窗口的权值W保留,直至一个epoch运算完毕后再进行更新。 这个6层的神经网络有大概60K的参数量,比之前全连接层减少了近5/6。

    65410

    《探秘卷积神经网络的核心—卷积核》

    在当今人工智能飞速发展的时代,卷积神经网络(CNN)在图像识别、语音识别等众多领域取得了令人瞩目的成就。而其中,卷积核作为CNN的核心组件,发挥着至关重要的作用。...例如,对于一个用于检测水平边缘的卷积核,它可能具有类似 ((-1, -1, -1), (0, 0, 0), (1, 1, 1)) 的形状,当它在图像上滑动时,会突出图像中的水平边缘部分...减少参数数量:在卷积神经网络中,卷积核的权重在其不同位置上保持不变,即参数共享。这意味着无论卷积核在输入数据的哪个位置进行卷积操作,其权重都是相同的。...四、卷积核的类型与应用 标准卷积核:如3x3卷积核在现代神经网络中非常流行,它在效率和性能之间提供了良好的平衡,可以捕获图像中的基本特征。...卷积核作为卷积神经网络的核心部分,以其独特的方式实现了对输入数据的特征提取和处理,为卷积神经网络在各个领域的成功应用奠定了坚实的基础。

    10500

    卷积神经网络的压缩

    正文部分系《解析卷积神经网络——深度学习实践手册》基础理论篇部分,本次将介绍卷积神经网络压缩的具体途径 附下载文档地址: http://lamda.nju.edu.cn/weixs/book/CNN_book.pdf...学习卷积神经网络压缩的必要性 1虽然云计算可以将一部分计算需求转移到云端,但对于一些高实时性计算场景而言,云计算的带宽、延迟和全时可用性均面临着严峻的挑战,从而无法替代本地计算。...2另一方面,许多研究表明,深度神经网络面临着严峻的过参数化, 模型内部参数存在着巨大的冗余。 ?...但高维的特征会直接导致卷积层参数的急剧增加。为追求模型容量与参数的平衡,可使用1x1的卷积来对输人特 征进行降维。...这里为了减少网络参数,3x3的卷积核构成,占用同时也为了综合多种空间结构信息,使用了部分1x1的卷积来代替3x3的卷积。

    99420

    使用Keras构建具有自定义结构和层次图卷积神经网络(GCNN)

    如何构建具有自定义结构和层次的神经网络:Keras中的图卷积神经网络(GCNN) 在生活中的某个时刻我们会发现,在Tensorflow Keras中预先定义的层已经不够了!我们想要更多的层!...在这个循序渐进的教程中,我们将构建一个包含并行层的神经网络,其中包括一个图卷积层。那么什么是图上的卷积呢?...图卷积神经网络 在传统的神经网络层中,我们在层输入矩阵X和可训练权值矩阵w之间进行矩阵乘法,然后应用激活函数f。因此,下一层的输入(当前层的输出)可以表示为f(XW)。...模型1:序列层的神经网络 作为基准,我们使用具有序列层的标准神经网络(熟悉的keras序列模型)。...模型3:具有图卷积层的神经网络 到目前为止,我们已经了解了如何使用Keras Functional API创建自定义网络结构。那如果我们需要使用用户自定义的操作自定义的层呢?

    2.1K20

    卷积神经网络中的Winograd快速卷积算法

    目录 写在前面 问题定义 一个例子 F(2, 3) 1D winograd 1D to 2D,F(2, 3) to F(2x2, 3x3) 卷积神经网络中的Winograd 总结 参考 博客:blog.shinelee.me...卷积神经网络中的Winograd 要将Winograd应用在卷积神经网络中,还需要回答下面两个问题: 上面我们仅仅是针对一个小的image tile,但是在卷积神经网络中,feature map的尺寸可能很大...在卷积神经网络中,feature map是3维的,卷积核也是3维的,3D的winograd该怎么做?...第二个问题,3维卷积,相当于逐层做2维卷积,然后将每层对应位置的结果相加,下面我们会看到多个卷积核时更巧妙的做法。 这里直接贴上论文中的算法流程: ?...只适用于较小的卷积核和tile(对大尺寸的卷积核,可使用FFT加速),在目前流行的网络中,小尺寸卷积核是主流,典型实现如\(F(6\times 6, 3\times 3)\)、\(F(2\times 2

    2.4K40

    深入理解卷积神经网络中的卷积

    卷积神经网络是一种特殊的神经网络结构,是自动驾驶汽车、人脸识别系统等计算机视觉应用的基础,其中基本的矩阵乘法运算被卷积运算取代。它们专门处理具有网格状拓扑结构的数据。...历史 卷积神经网络最初是由福岛邦彦在1980年引入的,模型名为Neocognitron。它的灵感来自于Hubel和Weisel提出的神经系统的层次模型。...此后,卷积神经网络不断向前发展,基于CNN的体系结构不断赢得ImageNet, 2015年,基于卷积神经网络的体系结构ResNet的误差率超过人类水平的5.1%,误差率为3.57%。...互相关函数具有一个特性,当它应用于离散的单位脉冲(一个二维矩阵,其中只有一个1,其他都是0)时,得到的结果是滤波器的副本,但旋转了180度。 ? 卷积: 卷积运算与互相关运算非常相似,但有细微的区别。...卷积运算同样遵循平移不变性和局部性的性质。 ? 注意: 尽管这两个操作稍有不同,但是所使用的核是否对称并不重要。 结论: 在这篇文章中,我们简要讨论了卷积神经网络的历史和一些特性。

    1.2K20

    一维卷积神经网络的理解是什么_卷积神经网络的输入

    大家好,又见面了,我是你们的朋友全栈君。...设输入的数据维度是B x S x T 一维卷积神经网络在维度S上进行卷积 如下,设置一维卷积网络的输入通道为16维,输出通道为33维,卷积核大小为3,步长为2 # in_channels: 16 # out_channels...20 x 33 x 24 第二个维度从16变为33,因为一维卷积输入通道为16,对应输入的第二个维度,一维卷积输出为33,对应输出的第二个维度 最后一个维度从50变为24,将参数带入公式[(n+2p-f...) / s + 1]向下取整得到[(50-3)/2 + 1] = 24 而全连接神经网络对维度T进行卷积 使用和上述相同的输入维度,设置全连接神经网络的输入维度为input的最后一个维度50,输出维度为...20 x 16 x 33 即,全连接神经网络只在输入的最后一个维度进行卷积 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

    92120
    领券