首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Nat. Biotechnol. | 用机器学习预测多肽质谱库

    本文介绍Max-Planck生物化学研究所计算系统生物化学研究组的Jürgen Cox近期发表在Nature Biotechnology的综述Prediction of peptide mass spectral libraries with machine learning。最近开发的机器学习方法用于识别复杂的质谱数据中的肽,是蛋白质组学的一个重大突破。长期以来的多肽识别方法,如搜索引擎和实验质谱库,正在被深度学习模型所取代,这些模型可以根据多肽的氨基酸序列来预测其碎片质谱。这些新方法,包括递归神经网络和卷积神经网络,使用预测的计算谱库而不是实验谱库,在分析蛋白质组学数据时达到更高的灵敏度或特异性。机器学习正在激发涉及大型搜索空间的应用,如免疫肽组学和蛋白质基因组学。该领域目前的挑战包括预测具有翻译后修饰的多肽和交联的多肽对的质谱。将基于机器学习的质谱预测渗透到搜索引擎中,以及针对不同肽类和测量条件的以质谱为中心的数据独立采集工作流程,将在未来几年继续推动蛋白质组学应用的灵敏度和动态范围。

    01

    “筷搜”来了,不完美但绝对牛X!

    百度筷搜来了,如此真实。 愚人节期间,“用筷子检测地沟油的百度筷搜”不知道打动多少被残酷的食品安全现状所困扰的国人,除了解决食品安全问题,百度筷搜还可以告诉用户一道菜如何做,推荐味道相似的菜和相关餐厅——俨然就是一个关于“吃”的搜索神器。不过,所有人都认为这是不可能实现的:没有什么传感器可以检测地沟油,筷子又如此细难以植入传感器,这是一场精彩的营销但却是无法实现的愿景。让所有人惊呼的是,百度竟然将真的“筷搜”摆到了大家面前:就在百度世界2014的大会现场,“百度筷搜”正式发布,绝对不是愚人节玩笑。 最小的

    04

    【诺贝尔物理学奖幕后的AI】刷屏的“引力波”,得益于AI技术的进步

    【新智元导读】人工智能技术很早就被应用于太空探索,包括计算机视觉、语音识别、自然语言处理以及机器学习等,获得2017年诺贝尔物理学奖的引力波研究,也使用了AI技术分析数据。或许未来,我们得给AI颁一个诺贝尔奖? 在近一个世纪前,爱因斯坦就曾在相对论中预言时空结构中存在波动,即引力波。 后来,一批科学家组成“激光干涉引力波天文台”(LIGO)项目在2015年9月14日首次探测到一个双黑洞系统合并的引力波信号,当时就在天体物理学界引发了一场革命,那时候参与发现引力波的研究团队就被锁定是诺贝尔物理学奖的热门人选

    07

    python与地理空间分析(一)

    在气象数据分析中,地理空间要素是一个必须考虑的关键特征项,也是重要的影响因素。例如气温会随着海拔的升高而降低,地形的坡向朝向也会影响风速的分布,此外,典型的地形会形成特定的气候条件,也是数据挖掘中可以利用的区域划分标准。数据分析中,地理空间分析往往能提供有效的信息,辅助进行决策。随着航空遥感行业的发展,积累的卫星数据也成为了数据挖掘的重要数据来源。 地理空间分析有好多软件可以支持,包括Arcgis,QGIS等软件平台,本系列文章将会着重分享python在地理空间分析的应用。主要包括地理空间数据的介绍,常用的python包,对矢量数据的处理,对栅格数据的处理,以及常用的算法和示例。 地理空间数据包括几十种文件格式和数据库结构,而且还在不断更新和迭代,无法一一列举。本文将讨论一些常用的地理空间数据,对地理空间分析的对象做一个大概的了解。 地理空间数据最重要的组成部分:

    05

    开篇-单细胞测序分析00

    回想起来自己从事生物相关的研究已经大概15年了,从研究生进入实验室也有10年时间,陆续从硕士,博士到博后,研究地点也从化学学院,到药学院再到医院科室。自己做的研究是“干-湿”实验结合的,发表的成果也是各自一半,但是综合起来还是生物信息分析的文章发表的影响因子高一些。到现在由于工作场所频繁发生变化,反而没有稳定的场所做实验,所以愈发的在生物信息方面下较多的功夫。因此我对这十几年来的生信研究进行总结,希望帮助新手克服生物信息陡峭的学习曲线,当然我自己也不是科班出身的,也希望与你一起交流学习。所有的内容均是以自己的实验数据(会明确下载地址给读者)操作来进行,避免某些在demo运行很好却在自己的环境中出现bug的情况。最后一点,现在通讯太发达了,欢迎大家与我V:cll7658直接交流共同进步。

    00

    智能遥感:AI赋能遥感技术

    随着人工智能的发展和落地应用,以地理空间大数据为基础,利用人工智能技术对遥感数据智能分析与解译成为未来发展趋势。本文以遥感数据转化过程中对观测对象的整体观测、分析解译与规律挖掘为主线,通过综合国内外文献和相关报道,梳理了该领域在遥感数据精准处理、遥感数据时空处理与分析、遥感目标要素分类识别、遥感数据关联挖掘以及遥感开源数据集和共享平台等方面的研究现状和进展。首先,针对遥感数据精准处理任务,从光学、SAR等遥感数据成像质量提升和低质图像重建两个方面对精细化处理研究进展进行了回顾,并从遥感图像的局部特征匹配和区域特征匹配两个方面对定量化提升研究进展进行了回顾。其次,针对遥感数据时空处理与分析任务,从遥感影像时间序列修复和多源遥感时空融合两个方面对其研究进展进行了回顾。再次,针对遥感目标要素分类识别任务,从典型地物要素提取和多要素并行提取两个方面对其研究进展进行了回顾。最后,针对遥感数据关联挖掘任务,从数据组织关联、专业知识图谱构建两个方面对其研究进展进行了回顾。

    07

    精度与速度的双赢,很难拒绝 | SpectralMamba用动态卷积学习动态 Mask ,将 Mamba速度问题卷服!

    高光谱(HS)成像技术的迅速发展显著增强了人类观察现实世界的能力,细节和深度都得到了提升[1]。与传统摄影仅在有限的几个宽光谱带内获取图像不同,高光谱成像系统通过测量每个像素的能量光谱,前所未有的同时实现了空间和光谱信息的捕获。生成的三维(3-D)高光谱数据立方体包含了每个空间分辨率元素的近乎连续的光谱轮廓,从而使得对成像内容的量化、识别和认定的准确性得到提高。得益于航空航天和仪器技术的最新进展[2],高光谱成像已逐渐成为遥感(RS)不可或缺的工具。在其广泛的应用中,高光谱图像分类在从环境监测、城市规划到军事科学等众多领域引起了广泛关注,展示了其潜在的普遍性和交叉重要性[3, 4]。

    01

    可穿戴功能性近红外光谱成像在自然环境中的应用

    新型便携无线可穿戴功能性近红外光谱成像(fNIRS)设备的发展为脑功能成像开辟新路,这将带来认知研究的革命性变化。在过去的几十年里,诸多研究采用了传统的功能近红外光谱成像(fNIRS)方法,证明了这项技术在不同人群和不同应用领域的适用性,其中涉及健康大脑研究及脑损伤研究。然而,可穿戴fNIRS更具吸引力的特征在于,它能够在日常生活场景中施测,这是其他金标准的神经成像方法(如功能性磁共振成像)所不能实现的。这将极大影响我们探究人脑功能的神经基础及机制的方式。本文的目的是回顾认知神经科学领域中采用可穿戴fNIRS在自然环境下进行的研究。此外,我们提出了使用可穿戴fNIRS在无约束环境下可能面临的挑战,讨论了更准确推断大脑功能性激活状态的方法。最后,我们总体展望了认知神经科学领域的未来前景,我们认为,在可穿戴fNIRS研究中的获益将极为可观。本文发表在Japanese Psychological Research杂志。

    01
    领券