遥感技术已成为研究和了解地球表面和大气的重要工具。ENVI软件是一款领先的软件包,为专业人员提供分析和处理遥感数据所需的必要工具。ENVI软件已被广泛应用于农业、地质、林业和城市规划等各个领域。本文将探索ENVI软件的特点和使用方法,并提供一个具体的使用案例,演示如何使用ENVI软件进行遥感数据分析。
在计算机科学和软件工程领域,Origin是一款非常著名的科学绘图软件,它提供了许多独特的功能,可以帮助用户更好地分析和解释数据。下面,我们将通过实际案例来详细介绍Origin软件的一些独特功能。
随着卫星遥感技术的不断发展,大量的遥感数据被获取并广泛应用于资源调查、环境监测、灾害评估等领域。然而,由于遥感数据复杂多样,处理方式繁琐,因此需要借助专业的遥感数据处理软件来实现数据的分析和应用。ENVI软件作为一款专业的遥感数据处理工具,具有强大的数据处理和分析能力,成为遥感数据处理领域不可替代的工具之一。本文将结合实际案例,介绍ENVI软件在遥感数据处理中的应用和操作方法,并提供实用的技巧和建议。
Origin软件是由OriginLab Corporation开发的一款科学绘图和数据分析软件。其旨在帮助科学家和工程师更好地理解他们的数据。Origin软件由很多实用的工具和功能,可以用于制作各种图表,例如线图、条形图、散点图和箱线图等。此外,Origin软件还支持导入和导出各种常见的数据格式。这使得它成为一个非常实用的工具,可用于处理各种类型的数据。
本文约4500字,建议阅读8分钟 本文将为各位读者呈现相关系列成果。 近年来,为了突破传统光学研究的局限性,光学与物理学交叉领域的一个新兴技术超光学出现,并且展现出巨大的市场前景。在这门技术高速发展的过程中,人工智能凭借自身强大的能力,起到了重要的推动作用,那么二者究竟碰撞出了何种火花? 关键词:AI 超光学 超表面 在我们生活的世界之中,光扮演了核心的角色。也正因为光的重要性和独特性,伽利略、牛顿、麦克斯韦、爱因斯坦等科学巨人都曾致力于光的研究,可以说,光学研究已经拥有悠久的历史。然而随着技术的发展、人
MestReNova是一款非常实用的化学数据分析软件,它可以帮助你分析和处理各种化学数据,包括核磁共振、质谱和红外光谱等。掌握MestReNova的基本操作和高级功能,可以让你更好地使用这款软件,并且让你的化学学习和研究变得更加容易和高效。。如果你正在学习化学或者从事化学研究,MestReNova是一个非常不错的选择。
Gustau Camps-Valls小组开设的视觉科学、机器学习和图像处理课程资料学的学习与分享。这些课程与他的研究密切相关,课程适合大学(遥感、电子工程和神经科学硕士),以及视觉科学(IOBA)博士和硕士课程和计算机视觉硕士课程。课程的详细介绍如下(包含:详细的PPT讲义和Matlab代码):
本文介绍Max-Planck生物化学研究所计算系统生物化学研究组的Jürgen Cox近期发表在Nature Biotechnology的综述Prediction of peptide mass spectral libraries with machine learning。最近开发的机器学习方法用于识别复杂的质谱数据中的肽,是蛋白质组学的一个重大突破。长期以来的多肽识别方法,如搜索引擎和实验质谱库,正在被深度学习模型所取代,这些模型可以根据多肽的氨基酸序列来预测其碎片质谱。这些新方法,包括递归神经网络和卷积神经网络,使用预测的计算谱库而不是实验谱库,在分析蛋白质组学数据时达到更高的灵敏度或特异性。机器学习正在激发涉及大型搜索空间的应用,如免疫肽组学和蛋白质基因组学。该领域目前的挑战包括预测具有翻译后修饰的多肽和交联的多肽对的质谱。将基于机器学习的质谱预测渗透到搜索引擎中,以及针对不同肽类和测量条件的以质谱为中心的数据独立采集工作流程,将在未来几年继续推动蛋白质组学应用的灵敏度和动态范围。
百度筷搜来了,如此真实。 愚人节期间,“用筷子检测地沟油的百度筷搜”不知道打动多少被残酷的食品安全现状所困扰的国人,除了解决食品安全问题,百度筷搜还可以告诉用户一道菜如何做,推荐味道相似的菜和相关餐厅——俨然就是一个关于“吃”的搜索神器。不过,所有人都认为这是不可能实现的:没有什么传感器可以检测地沟油,筷子又如此细难以植入传感器,这是一场精彩的营销但却是无法实现的愿景。让所有人惊呼的是,百度竟然将真的“筷搜”摆到了大家面前:就在百度世界2014的大会现场,“百度筷搜”正式发布,绝对不是愚人节玩笑。 最小的
如果你有志于做一个数据专家,你就应该保持一颗好奇心,总是不断探索,学习,问各种问题。在线入门教程和视频教程能帮你走出第一步,但是最好的方式就是通过熟悉各种已经在生产环境中使用的工具而为成为一个真正的数
【新智元导读】人工智能技术很早就被应用于太空探索,包括计算机视觉、语音识别、自然语言处理以及机器学习等,获得2017年诺贝尔物理学奖的引力波研究,也使用了AI技术分析数据。或许未来,我们得给AI颁一个诺贝尔奖? 在近一个世纪前,爱因斯坦就曾在相对论中预言时空结构中存在波动,即引力波。 后来,一批科学家组成“激光干涉引力波天文台”(LIGO)项目在2015年9月14日首次探测到一个双黑洞系统合并的引力波信号,当时就在天体物理学界引发了一场革命,那时候参与发现引力波的研究团队就被锁定是诺贝尔物理学奖的热门人选
2020, ISPRS Journal Photogrammetry Remote Sensing
100万年前的人类可能曾在以色列的一个遗址处做过饭! 作者|李梅 编辑|陈彩娴 火的使用是智人进化的一个关键因素,火不仅可以用于创造更复杂的工具,还可让食物变得更安全,从而有助于大脑的发育。 迄今为止,全球范围内仅发现了5个可追溯到50万年前用火证据的遗址,包括位于南非的Wonderwerk洞穴和Swartkrans、肯尼亚的Chesowanja、以色列的Gesher Benot Ya'aqov、西班牙的Cueva Negra。 现在,以色列的一个研究团队利用人工智能算法发现了第六个表明人类用火痕迹的遗址!
如果你有志于做一个数据专家,你就应该保持一颗好奇心,总是不断探索,学习,问各种问题。在线入门教程和视频教程能帮你走出第一步,但是最好的方式就是通过熟悉各种已经在生产环境中使用的工具而为成为一个真正的数据专家做好充分准备。 我咨询了我们真正的数据专家,收集整理了他们认为所有数据专家都应该会的七款 Python 工具。The Galvanize Data Science 和 GalvanizeU 课程注重让学生们花大量的时间沉浸在这些技术里。当你找第一份工作的时候,你曾经投入的时间而获得的对工具的深入理解将会使
降维是分析高维数据的重要工具。Spatial Predictor Envelope是一种回归的降维方法,它假设预测变量的某些线性组合对回归产生的影响很小。与传统的最大似然和最小二乘估计相比,该方法可以显著提高效率和预测准确性。虽然目前的工作已经针对独立数据开发和研究了预测包络,但还没有出现将预测包络适应于空间数据的工作。这篇论文提出了spatial predictor envelope (SPE) ,并且导出了 SPE 的最大似然估计,以及给定某些假设的估计的渐近分布,表明 SPE 估计在渐近上比原始空间模型的估计更有效。还通过一些模拟研究分析说明了所提出模型的有效性。
现在 AI 技术已经在发挥作用帮助我们与时间赛跑,挽回更多生命和损失。本文我们也介绍一下『机器学习』和『深度学习』等人工智能技术在森林火灾扑救过程中的应用。
在气象数据分析中,地理空间要素是一个必须考虑的关键特征项,也是重要的影响因素。例如气温会随着海拔的升高而降低,地形的坡向朝向也会影响风速的分布,此外,典型的地形会形成特定的气候条件,也是数据挖掘中可以利用的区域划分标准。数据分析中,地理空间分析往往能提供有效的信息,辅助进行决策。随着航空遥感行业的发展,积累的卫星数据也成为了数据挖掘的重要数据来源。 地理空间分析有好多软件可以支持,包括Arcgis,QGIS等软件平台,本系列文章将会着重分享python在地理空间分析的应用。主要包括地理空间数据的介绍,常用的python包,对矢量数据的处理,对栅格数据的处理,以及常用的算法和示例。 地理空间数据包括几十种文件格式和数据库结构,而且还在不断更新和迭代,无法一一列举。本文将讨论一些常用的地理空间数据,对地理空间分析的对象做一个大概的了解。 地理空间数据最重要的组成部分:
英文:Dynelle Abeyta译文:oschina www.oschina.net/translate/seven-python-tools-all-data-scientists-should-
来源:Deephub Imba本文约2000字,建议阅读4分钟本文介绍了今年5篇关于降维方法的论文。 1、Dimension Reduction for Spatially Correlated Data: Spatial Predictor Envelope Paul May, Hossein Moradi Rekabdarkolaee 降维是分析高维数据的重要工具。Spatial Predictor Envelope是一种回归的降维方法,它假设预测变量的某些线性组合对回归产生的影响很小。与传统的最大似
如果你有志于做一个数据专家,你就应该保持一颗好奇心,总是不断探索,学习,问各种问题。在线入门教程和视频教程能帮你走出第一步,但是最好的方式就是通过熟悉各种已经在生产环境中使用的工具而为成为一个真正的数据专家做好充分准备。 我咨询了我们真正的数据专家,收集整理了他们认为所有数据专家都应该会的七款 Python 工具。The Galvanize Data Science 和 GalvanizeU 课程注重让学生们花大量的时间沉浸在这些技术里。当你找第一份工作的时候,你曾经投入的时间而获得的对工具的深入理解将
选自arXiv 作者:黄合良等 机器之心编译 参与:刘晓坤 近日,来自中国科学技术大学、中国科学院-阿里巴巴量子计算实验室等机构,由潘建伟院士、陆朝阳教授带领的团队完成了在光量子处理器上执行拓扑数据分析(TDA)的原理性实验演示验证。TDA 可以抵抗一定噪声的干扰,从数据中提取有用信息,而量子版本的 TDA 能实现对经典最优 TDA 算法的指数级加速。量子 TDA 算法也是继 Shor 算法(用于大数因子分解进行密码破译)、Grover 算法(用于搜索问题)、HHL 算法(用于解线性方程组)之后,人类在量子
“数据故事计划”旨在收集各类有关大数据的故事然后进行比赛及相关的宣传和推广。包括同学们接触大数据、使用大数据、最终取得成果的过程,主要内容为大数据在各类行业的应用以及个人感悟。希望以此活动使得更多同学认识大数据,学会利用大数据解决问题,最终实现向“数据ers”的转变。
我咨询了我们真正的数据专家,收集整理了他们认为所有数据专家都应该会的七款 Python 工具。The Galvanize Data Science 和 GalvanizeU 课程注重让学生们花大量的时间沉浸在这些技术里。当你找第一份工作的时候,你曾经投入的时间而获得的对工具的深入理解将会使你有更大的优势。下面就了解它们一下吧:
在恶性肿瘤的临床治疗中,靶向CTLA-4/PD-1/PD-L1等位点的单克隆抗体表现出了令人欣喜的抑制效果,但同时患者也出现了严重的免疫相关不良反应(immune-related adverse events, irAEs)。这些irAEs轻则引发炎症反应,重则导致身体脏器功能衰竭,据统计在PD-1/CTLA-4抗体治疗患者中约60%病人出现了严重的治疗毒性反应,因此极大地限制了免疫检查点抑制剂抗体的临床使用。
第三期理论教程结尾时讲到蛋白质三大元素整合以及搜库过程是理论谱图和实际谱图的匹配过程
一个富有极客精神的团队,解决问题的第一步是能不能自己制造。 我们所知道的人工智能技术研究方向有机器视觉、语音识别、语义识别,赋予了机器“眼睛”、“耳朵”。今天,一起来了解一个探索人工智能嗅觉技术的公司——盗火者。 盗火者基于复式光谱仪开发的一系列物质探测产品,不仅能够有效检验假奶粉、假酒、假化妆品等物品,还能够对水体和大气进行监测。 一个班级共同创业 盗火者的创始人兼总经理陈明烨本科毕业于浙江大学,研究生毕业于复旦大学数学专业。毕业后在数据公司Opera Solutions、UBS Investment B
机器都会有故障和失灵。确定设备的状况或维护计划何时应该执行,是影响成本和生产力的极其战略性的决定。
ENVI 是图像处理和分析软件的行业标准。图像分析师、GIS专业人员和科学家使用它从地理空间图像中提取及时、可靠和准确的信息。
回想起来自己从事生物相关的研究已经大概15年了,从研究生进入实验室也有10年时间,陆续从硕士,博士到博后,研究地点也从化学学院,到药学院再到医院科室。自己做的研究是“干-湿”实验结合的,发表的成果也是各自一半,但是综合起来还是生物信息分析的文章发表的影响因子高一些。到现在由于工作场所频繁发生变化,反而没有稳定的场所做实验,所以愈发的在生物信息方面下较多的功夫。因此我对这十几年来的生信研究进行总结,希望帮助新手克服生物信息陡峭的学习曲线,当然我自己也不是科班出身的,也希望与你一起交流学习。所有的内容均是以自己的实验数据(会明确下载地址给读者)操作来进行,避免某些在demo运行很好却在自己的环境中出现bug的情况。最后一点,现在通讯太发达了,欢迎大家与我V:cll7658直接交流共同进步。
随着人工智能的发展和落地应用,以地理空间大数据为基础,利用人工智能技术对遥感数据智能分析与解译成为未来发展趋势。本文以遥感数据转化过程中对观测对象的整体观测、分析解译与规律挖掘为主线,通过综合国内外文献和相关报道,梳理了该领域在遥感数据精准处理、遥感数据时空处理与分析、遥感目标要素分类识别、遥感数据关联挖掘以及遥感开源数据集和共享平台等方面的研究现状和进展。首先,针对遥感数据精准处理任务,从光学、SAR等遥感数据成像质量提升和低质图像重建两个方面对精细化处理研究进展进行了回顾,并从遥感图像的局部特征匹配和区域特征匹配两个方面对定量化提升研究进展进行了回顾。其次,针对遥感数据时空处理与分析任务,从遥感影像时间序列修复和多源遥感时空融合两个方面对其研究进展进行了回顾。再次,针对遥感目标要素分类识别任务,从典型地物要素提取和多要素并行提取两个方面对其研究进展进行了回顾。最后,针对遥感数据关联挖掘任务,从数据组织关联、专业知识图谱构建两个方面对其研究进展进行了回顾。
高光谱(HS)成像技术的迅速发展显著增强了人类观察现实世界的能力,细节和深度都得到了提升[1]。与传统摄影仅在有限的几个宽光谱带内获取图像不同,高光谱成像系统通过测量每个像素的能量光谱,前所未有的同时实现了空间和光谱信息的捕获。生成的三维(3-D)高光谱数据立方体包含了每个空间分辨率元素的近乎连续的光谱轮廓,从而使得对成像内容的量化、识别和认定的准确性得到提高。得益于航空航天和仪器技术的最新进展[2],高光谱成像已逐渐成为遥感(RS)不可或缺的工具。在其广泛的应用中,高光谱图像分类在从环境监测、城市规划到军事科学等众多领域引起了广泛关注,展示了其潜在的普遍性和交叉重要性[3, 4]。
在本篇博客中,我们将通过Google Earth Engine (GEE) 探索湖泊面积随时间的变化。通过分析MODIS数据集中的归一化差异水体指数(NDWI),我们可以识别湖泊区域并监测其面积变化。
代谢重编程是目前疾病研究比较火热的一个话题,代谢常常影响着多种疾病,以癌症为例,通过代谢通路研究,可以靶向寻找肿瘤细胞能量供应途径,从而抑制肿瘤细胞增殖,其中脂代谢可以称为疾病代谢机制研究中十分重要的一员。随着对脂质在细胞生物学,生理学和病理学中的多种生物学作用的更好的理解,脂质的研究已经发展成为越来越重要的研究领域。
今天给大家介绍来自哈佛医学院、麻省理工学院以及东北大学(美国)团队发表在Nature Communications上的文章,文章提出一个变分自编码器的概率模型(msiPL)用于学习质谱图像的低维嵌入表示。该模型可分析不同类型质谱仪和不同组织类型的质谱图像;并在3个公开的质谱成像(MSI)数据集以及2个由该论文作者收集整理的MSI数据集上进行了实验,实验结果表明msiPL可以有效的分析这些MSI数据集。
编辑/凯霞 蛋白质磷酸化是一种广泛的翻译后修饰(PTM),是生物体内一种普通的调节方式,在细胞信号转导的过程中起重要作用。基于数据依赖采集(DDA)和数据非依赖采集(DIA)是基于高分辨质谱的非靶向代谢组学中的常见数据采集模式。 然而,当前的 DIA 磷酸蛋白质组学工作流程面临着一个重大限制,即需要在数据处理之前构建高质量的光谱库。 近日,上海科技大学的科研团队开发了一个名为 DeepPhospho 的深度学习框架,以实现对磷酸肽的 LC-MS/MS 数据的高度准确预测。通过设计和评估 DeepPhosph
气象站无疑是当今智能农业领域最受欢迎的设备。这款设备集成了多种智能农业传感器,能够在现场对各类数据进行收集,然后迅速将其上传至云端。用户可根据这些详尽的测量结果绘制出精准的气候条件图,进而挑选出最适宜的作物,并采取有效的措施提升其产量。例如,allMETEO、Smart Elements以及Pycno等设备,都是此类农业物联网的优秀范例。
Landsat8_C2_RAW数据集是经过缩放和校准的辐射亮度产品,按照数据质量划分为T1和T2。数据质量最好的影像归为T1,主要存在于L1TP处理等级中,这些数据做过很好的几何校正和辐射定标,适合于多时相数据分析。处理中没有达到 T1标准的影像被归为T2,T2和T1的辐射标准相同,由于缺少轨道信息,大范围云层覆盖等因素导致可选择的地面控制点不够,没有达到T1的几何精度标准,主要包括 L1GT和L1GS处理等级数据。前言 – 人工智能教程
原作者 Amy Lee Walton 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 当设计地图时,我会想:我想让观看者如何阅读地图上的信息?我想让他们一目了然地看出地理区域的测量结果变化吗?我想要显示出特定地区的多样性吗?或者我想要标明某个区域内的高频率活动或者相对的体积/密度? 有多种方法可以在地图中快速而集中的呈现出可视化数据。我常用的几个是: · Dot density (点密度图) ——使用点或其他符号展示特征或现象的集体情况(密度)的地图样式。例如,显示区域内的交
首先是在Python官网下载你计算机对应的Python软件,然后安装。安装过程基本都是傻瓜式,不做过多叙述,一路回车即可。
【新智元导读】今年3月,谷歌联合 7 家顶级风投资本,联合举办机器学习初创公司大赛,挑选底层机器学习技术最具独特性,可扩展,产品能市场化的公司进行投资。今天,竞赛结果公布,用机器学习简化大脑数据分析流程、自动推荐系统和医疗数据标记的 3 家公司获奖,从 350 个团队中脱颖而出。竞赛结果体现了国外机器学习投资趋势,值得关注。 今年 3 月,紧随收购数据科学平台 Kaggle 后,谷歌在首届谷歌云大会 Google Cloud Next 上宣布推出谷歌云机器学习初创公司竞赛,将采取创新机器学习方法的初创公司放
SODA理事会理事、苏打数据CEO高丰:只有数据流通,数据才能创造价值
新型便携无线可穿戴功能性近红外光谱成像(fNIRS)设备的发展为脑功能成像开辟新路,这将带来认知研究的革命性变化。在过去的几十年里,诸多研究采用了传统的功能近红外光谱成像(fNIRS)方法,证明了这项技术在不同人群和不同应用领域的适用性,其中涉及健康大脑研究及脑损伤研究。然而,可穿戴fNIRS更具吸引力的特征在于,它能够在日常生活场景中施测,这是其他金标准的神经成像方法(如功能性磁共振成像)所不能实现的。这将极大影响我们探究人脑功能的神经基础及机制的方式。本文的目的是回顾认知神经科学领域中采用可穿戴fNIRS在自然环境下进行的研究。此外,我们提出了使用可穿戴fNIRS在无约束环境下可能面临的挑战,讨论了更准确推断大脑功能性激活状态的方法。最后,我们总体展望了认知神经科学领域的未来前景,我们认为,在可穿戴fNIRS研究中的获益将极为可观。本文发表在Japanese Psychological Research杂志。
大数据文摘编纂作品 主 编:康欣 副主编: Linda Bi 欢迎熟悉外语(含各种“小语种”)的朋友,加入大数据文摘翻译志愿者团队,分别回复“翻译”和“志愿者”可了解更详细信息。 继“医疗大数据专栏”成立后,“数据可视化专栏”今日成立! 大数据时代正在奔涌而来。在这个时代,数据,渗入到我们生活的每一个毛孔:购物、出行、饮食、娱乐、美容、求职、医疗、健身、婚恋、耕种、防洪、生产制造等等,不一而足。甚至是睡着了,你还在产生着数据。面对每天产生的数以 T 计的数据,你是否做好了准备?你是否了解如何去“看”这
领取专属 10元无门槛券
手把手带您无忧上云