首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Unity3d场景快速烘焙【2020】

    很多刚刚接触Unity3d的童鞋花了大量的时间自学,可总是把握不好Unity3d的烘焙,刚从一个坑里爬出来,又陷入另一个新的坑,每次烘焙一个场景少则几个小时,多则几十个小时,机器总是处于假死机状态,半天看不到结果,好不容易烘焙完了,黑斑、撕裂、硬边、漏光或漏阴影等缺陷遍布,惨不忍睹,整体效果暗无层次,或者苍白无力,灯光该亮的亮不起来,该暗的暗不下去,更谈不上有什么意境,痛苦的折磨,近乎失去了信心,一个团队从建模到程序,都没什么问题,可一到烘焙这一关,就堵得心塞,怎么也搞不出好的视觉效果,作品没法及时向用户交付,小姐姐在这里分享一些自己的经验,希望能帮到受此痛苦折磨的朋友,话不多说,开工!

    03

    Deep Retinex Decomposition for Low-Light Enhancement

    Retinex模型是微光图像增强的有效工具。假设观测图像可以分解为反射率和光照。大多数现有的基于retinx的方法都为这种高度病态分解精心设计了手工制作的约束条件和参数,当应用于各种场景时,可能会受到模型容量的限制。在本文中,我们收集了一个包含低/正常光图像对的低光数据集(LOL),并提出了在该数据集上学习的深度视网膜网络,包括用于分解的解分解网和用于光照调整的增强网。在解压网络的训练过程中,分解的反射率和光照没有ground truth。该网络仅在关键约束条件下学习,包括成对低/正常光图像共享的一致反射率和光照的平滑度。在分解的基础上,通过增强网络对光照进行亮度增强,联合去噪时对反射率进行去噪操作。Retinex-Net是端到端可训练的,因此学习的分解本质上有利于亮度调整。大量实验表明,该方法不仅在弱光增强方面具有良好的视觉效果,而且能很好地表征图像的分解。

    02
    领券