首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

面试系列-kafka偏移量提交

消费者消费完消息之后,更新自己消费那个消息的操作; _consumer_offset:消费者消费完消息之后,会往_consumer_offset主题发送消息,_consumer_offset保存每个分区的偏移量...自动位移提交的动作是在 poll() 方法的逻辑里完成的,在每次真正向服务端发起拉取请求之前会检查是否可以进行位移提交,如果可以,那么就会提交上一次轮询的位移;每过5秒就会提交偏移量,但是在4秒发生了分区在均衡...,偏移量还没来得及提交,他们这四秒的消息就会被重复消费; 当设置 enable.auto.commit 为 true,Kafka 会保证在开始调用 poll 方法时,提交上次 poll 返回的所有消息。...从顺序上来说,poll 方法的逻辑是先提交上一批消息的位移,再处理下一批消息,因此它能保证不出现消费丢失的情况; 手动提交 自动提交消费位移的方式并没有为开发者留有余地来处理重复消费和消息丢失的问题,无法做到精确的位移管理...,后面消费的时候,偏移量也能够提交成功,所以不会有大影响;但是到了最后消费者要关闭了的时候,偏移量一定要提交成功;因此在消费者关闭前一般会组合使用 commitAsync()和commitsync()

1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    蛇形矩阵 (偏移量应用)

    蛇形矩阵 (偏移量应用) 原题链接 描述:输入两个整数 n 和 m,输出一个 n 行 m 列的矩阵,将数字 1 到 n×m 按照回字蛇形填充至矩阵中。 具体矩阵形式可参考样例。...3 输出样例: 1 2 3 8 9 4 7 6 5 分析: 创建一个空的二维数组,用于存放答案 遍历数组,进行判断,在相应位置按递增排列 判断方法: 1.可以使用四个if else判断边界 2.记录偏移量进行判断...: 设当前位置坐标为(x,y),上、下、左、右方向分别为dr=0 dr=2 dr=3 dr=1 则该位置上、下、左、右的位置所对应的偏移量分别为(x-1,y) (x+1,y) (x,y-1) (x,y+...1) 将方向与偏移量的对应关系初始化为两个数组便于引用 每次执行循环后,判断下一个位置是否到达数组边界,或数组中已经存在元素 若满足上述情况,则改变方向 代码 #include <bits/stdc...const int maxn=110; int a[maxn][maxn]; //定义空的二维数组数组 int dx[]={-1,0,1,0},dy[]={0,1,0,-1}; //初始化方向所对应的偏移量的数组

    21720

    蛇形矩阵 (偏移量应用)

    蛇形矩阵 (偏移量应用) 原题链接 描述:输入两个整数 n 和 m,输出一个 n 行 m 列的矩阵,将数字 1 到 n×m 按照回字蛇形填充至矩阵中。 具体矩阵形式可参考样例。...3 输出样例: 1 2 3 8 9 4 7 6 5 分析: 创建一个空的二维数组,用于存放答案 遍历数组,进行判断,在相应位置按递增排列 判断方法: 1.可以使用四个if else判断边界 2.记录偏移量进行判断...: 设当前位置坐标为(x,y),上、下、左、右方向分别为dr=0 dr=2 dr=3 dr=1 则该位置上、下、左、右的位置所对应的偏移量分别为(x-1,y) (x+1,y) (x,y-1) (x,y+...1) 将方向与偏移量的对应关系初始化为两个数组便于引用 image.png 每次执行循环后,判断下一个位置是否到达数组边界,或数组中已经存在元素 若满足上述情况,则改变方向 代码 #include...const int maxn=110; int a[maxn][maxn]; //定义空的二维数组数组 int dx[]={-1,0,1,0},dy[]={0,1,0,-1}; //初始化方向所对应的偏移量的数组

    51020

    Kafka - 分区中各种偏移量的说明

    在分区中,有一些重要的偏移量指标,包括AR、ISR、OSR、HW和LEO。下面我们来详细解释一下这些指标的含义和作用。...HW(High Watermark):高水位 HW是指已经被所有副本复制的最高偏移量。当消费者从分区中读取消息时,它会记录当前已经读取到的偏移量,并将该偏移量作为下一次读取的起始位置。...如果消费者读取到的偏移量小于HW,那么它只能读取到已经被所有副本复制的消息;如果消费者读取到的偏移量大于HW,那么它可能会读取到未被所有副本复制的消息。...LEO(Log End Offset):日志末尾偏移量 LEO是指分区中最后一条消息的偏移量。当生产者向分区中写入消息时,它会将该消息的偏移量记录在LEO中。...---- 分区中各种偏移量的说明 分区中的所有副本统称为AR(Assigned Replicas)。

    1.1K10

    MySQL偏移量的一点分析

    在搭建MySQL主从的时候,change master是一个关键,如果没有使用GTID的方式,就需要使用偏移量和指定的binlog,每次需要手工去抓取这些信息,感觉还是比较费力,而且偏移量对我们来说就是一个黑盒子...154,当时觉得可能是巧合吧,也就没有在意,但是又配置了几套环境,发现指定的binlog偏移量都是154,我觉得这个问题蛮有意思,就做了些简单的测试。...我找了很多套环境,建立了主从复制关系,发现不同版本的这个偏移量都有些差别。 比如在Percona的一个指定版本中就是154,在官方版本中就是另外一个值,是否开启GTID使得这个偏移量也有很大的差别。...那得到了这个信息,对我们处理问题有什么实际意义呢,目前来看是没有,我们指定偏移量还是得做基本的验证。 那我们换个角度。查看binary log的信息。...所以明白了这一点之后,对于偏移量的理解又明白了一些。 而binlog里面存在大量的event,比如这里末尾的Rotate是什么意思呢。

    1.4K70

    Kafka消费者 之 如何提交消息的偏移量

    参考下图的消费位移,x 表示某一次拉取操作中此分区消息的最大偏移量,假设当前消费者已经消费了 x 位置的消息,那么我们就可以说消费者的消费位移为 x ,图中也用了 lastConsumedOffset...该 TestOffsetAndPosition.java 文件的地址为: https://github.com/841809077/hdpproject/blob/master/src/main/java.../com/hdp/project/kafka/consumer/TestOffsetAndPosition.java 二、offset 提交的两种方式 1、自动提交 在 Kafka 中默认的消费位移的提交方式为自动提交...2、手动提交 Kafka 自动提交消费位移的方式非常简便,它免去了复杂的位移提交逻辑,但并没有为开发者留有余地来处理重复消费和消息丢失的问题。...如果提交失败,错误信息和偏移量会被记录下来。 三、同步和异步组合提交 一般情况下,针对偶尔出现的提交失败,不进行重试不会有太大问题,因为如果提交失败是因为临时问题导致的,那么后续的提交总会有成功的。

    3.7K41

    Java精度问题

    结果确实是 0.060000000000000005 0.5800000000000001 401.49999999999994 1.2329999999999999 Java中的简单浮点数类型float...这个问题相当严重,如果你有9.999999999999元,你的计算机是不会认为你可以购买10元的商品的。 在有的编程语言中提供了专门的货币类型来处理这种情况,但是Java没有。...现在让我们看看如何解决这个问题。 四舍五入 我们的第一个反应是做四舍五入。...也不能解决这个问题: System.out.println(new java.text.DecimalFormat("0.00").format(4.025));输出是4.02 现在我们已经可以解决这个问题了...;/** * 由于Java的简单类型不能够精确的对浮点数进行运算,这个工具类提供精 * 确的浮点数运算,包括加减乘除和四舍五入。

    1.1K50
    领券