2023-11-10,Galaxy生信云平台 UseGalaxy.cn 新增 12 个工具。
data<-read_excel("~/Desktop/Excel学习/表姐牌口罩销售数据.xlsx")
博客原文:https://suzan.rbind.io/2018/01/dplyr-tutorial-1/ 作者:Suzan Baert
这个包以一种统一的规范更高效地处理数据框。dplyr 包里处理数据框的所有函数的第一个参数都是数据框名。
本文我们超越了 CAPM 的简单线性回归,探索了 Fama French (FF) 股票风险/收益的多因素模型。
之前写 datamash 的使用教程 linux 极简统计分析工具 datamash 必看教程,收到了一位读者的私信,内容如上。
summary()函数会对 列 进行处理,并且 创建新的列表 ,简单来说就是把向量作为输入值,输出单个数值。
如今数据分析如火如荼,R与Python大行其道。你还在用Excel整理数据么,你还在用spss整理数据么。
假设数据以 tibble 格式保存。数据集如果用于统计与绘图,需要满足一定的格式要求,(Wickham, 2014) 称之为 整洁数据 (tidy data),基本要求是每行一个观测,每列一个变量,每个单元格恰好有一个数据值。这些变量应该是真正的属性,而不是同一属性在不同年、月等时间的值分别放到单独的列。
1、引子 朴素贝叶斯方法是一种使用先验概率去计算后验概率的方法,其中 朴素 的意思实际上指的是一个假设条件,后面在举例中说明。本人以为,纯粹的数学推导固然有其严密性、逻辑性的特点,但对我等非数学专业的人来说,对每一推导步骤的并非能透彻理解,我将从一个例子入手,类似于应用题的方式,解释朴素贝叶斯分类器,希望能对公式的理解增加形象化的场景。 2、实例 最近“小苹果”很火,我们就以苹果来举例说,假设可以用三个特征来描述一个苹果,分别为“尺寸”、“重量”和“颜色”;其中“尺寸”的取值为小、大,“重量”的取值为轻、
x2 = str_split(x," ")[[1]];x2 #是list 所以用[[]]
===============================================
大家在学习R语言的时候,大多参考《R语言实战》这本书,但这本书年代过于久远(中文第二版是2016年),主要着力点也是在R base上,R语言可视化的ggplot2包也只是简要介绍,而对于tidyverse包,《R语言实战》并未涉及,这也导致R语言的学习难度增加,今天我们给大家引入tidyverse包的学习。
Kubernetes 的日常使用过程中,在对象提交给集群之前,我们会有很多机会,很多方法对资源的 Yaml 定义进行检查和处理。很多读者应该也会知道,资源提交之后,还有机会使用 Admission Controller 对资源动动手脚,这其中其实有很多可以提炼出来的标准动作,可以用统一的控制器来进行处理,Kyverno 就是这样一个工具。有了 Kyverno 的帮助,YAML 程序员可以根据条件对资源进行筛选,符合条件的资源可以:
本篇描述了如何计算R中的数据框并将其添加到数据框中。一般使用dplyr R包中以下R函数:
同时对数据框的多列执行相同的函数操作经常有用,但是通过拷贝和粘贴的方式进行的话既枯燥就容易产生错误。
(library() : library(package)将加载名为package的命名空间,并添加到包的搜索列表中。加载前对搜索列表进行检查并更新,如果package不存在则报错,如果之前已加载package,则不会重复加载。如没有参数package即library(),则列出lib.loc指定的库中的所有可用包。library(help=package)将返回package的基本信息。
先前已经讲过R语言生成测试数据、数据预处理和外部数据输入等内容,但这仅仅是第一步,我们还需要对数据集进行筛选、缺失值处理等操作,以便获得可以应用于建模或者可视化的数据集(变量)。接下来就以鸢尾花测试数据集进行进一步的数据管理和筛选操作。
OPA 的 Gatekeeper 以及 Kyverno 是 CNCF 的两个头部策略管理项目,两个产品各有千秋,前面我们已经学习了 Gatekeeper,接下来我们就来了解下如何使用 Kyverno。
上节我们对选择现有的列进行了介绍与习题解答,现在对数据框添加新列进行介绍,这里使用mutate()函数,注意:mutate()总是将新列添加在数据集的最后。
原文:https://themockup.blog/posts/2020-09-04-10-table-rules-in-r/ Rmd[1]
上述一串代码意思是新增一列列名为“new”、数值是Sepal.Length * Sepal.Width的列
排序函数,按照某(几)个指定的列按照升(降)序排列重新排列数据集,参数ascending = False,降序排列,ascending = True,升序排列;
在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改正。pdpipe作为专门针对pandas进行流水线化改造的模块,为熟悉pandas的数据分析人员书写优雅易读的代码提供一种简洁的思路,本文就将针对pdpipe的用法进行介绍。
4. filter 匹配对应行的数据。并生成结果。等同于subset函数。实例:
https://www.cnblogs.com/feffery/p/12179647.html
本文介绍了如何使用dplyr和data.table两个R包进行数据清洗、数据加工和数据分析,通过几个实际案例展示了dplyr和data.table的常用功能和高效操作。
2 构建第一条ELK数据管道 本章将使用ELK技术栈来构建第一条基本的数据管道。这样可以帮助我们理解如何将ELK技术栈的组件简单地组合到一起来构建一个完整的端到端的分析过程 ---- 输入的数据集 在
dplyr最常用的5个函数: • 按值筛选观测(filter())。 • 对行进行重新排序(arrange())。 • 按名称选取变量(select())。 • 使用现有变量的函数创建新变量(mutate())。 • 将多个值总结为一个摘要统计量(summarize())。 函数的使用方法: (1) 第一个参数是一个数据框。 (2) 随后的参数使用变量名称(不带引号)描述了在数据框上进行的操作。 (3) 输出结果是一个新数据框。
你是否曾想过管理级联数据验证(即“数据有效性”)列表,而不需要几十到数百个命名的单元格区域?这里为你提供一个示例工作簿,其中运用的方法可以动态创建数据验证列表,允许管理垂直列表,向列表中添加新列,并无缝更新数据验证列表。
通常 dplyr 和 R 更适合对列进行操作,而对行操作则显得更麻烦。这篇文章,我们将学习围绕rowwise() 创建的 row-wise 数据框的 dplyr 操作方法。
arrange(test, desc(Sepal.Length)) #从大到小 desc()
有时我们需要创建新变量,例如我们新建一个列 newcol 值为 sleep_total-1 ;
使用 logstash 导入数据到 ES 时,由三个步骤组成:input、filter、output。整个导入过程可视为:unix 管道操作,而管道中的每一步操作都是由 "插件" 实现的。使用 ./bin/logstash-plugin list 查看 logstash 已安装的插件。
承接R&Python Data Science 系列:数据处理(1)继续介绍剩余的函数。
当ARIMA模型包括其它时间序列作为输入变量时,被称为传递函数模型(transfer function model)、多变量时间序列模型(multivariate time series model)、ARIMAX模型或Box-Tiao模型。传递函数模型是ARIMA模型的自然推广,Pankratz统称这种包含其它时间序列作为输入变量的ARIMA模型为动态回归。
尽管Excel在职场和学术界非常流行,但对于一些高级的统计分析、数据可视化、大规模数据处理等任务,可能需要更专业的软件或编程语言,如R、Python、SAS或Stata。此外,对于特定的行业或研究领域,可能会有其他更适合的工具和平台。
哈喽,我是学习生物信息学的阿榜!非常感谢您能够点击进来查看我的笔记。我致力于通过笔记,将生物信息学知识分享给更多的人。如果有任何纰漏或谬误,欢迎指正。让我们一起加油,一起学习进步鸭? 这份学习目录可以
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")):
大家好,本文为R语言数据处理120题系列完整版本。作者精心挑选120道数据处理中相关操作以习题形式发布,一共涵盖了数据处理、计算、可视化等常用操作,并对部分题目给出了多种解法与注解。动手敲一遍代码一定会让你有所收获!
使用机器学习和过股票价格来预测下一个时期的价格或方向并不是什么新鲜事,它也不会产生任何有意义的预测。在这篇文章中我们将一系列资产的时间序列数据分解成一个简单的分类问题,看看机器学习模型能否更好地预测下一个周期方向。目标和策略是每天投资一项资产。其资产将是机器学习模型最有信心在下一个上升Ť+1期间股价上涨的资产。换句话说,我们对机器学习模型给出最大预测概率的资产进行投资,即给定资产明天将升值。也就是说,如果模型预测在第t天,GOOG的资产将以0.78的预测概率高于之前的收盘价,并且还预测AMZN将以0.53的概率上升,那么我们今天将投资于GOOG。我们每天只投资一项资产,该模型可以扩展到卖空、多资产购买和多周期等。
原文的数据集是 bit.ly 短网址的,我这里在读取时出问题,不稳定,就帮大家下载下来,统一放到了 data 目录里。
一、玩转字符串 stringr包 图片 1.str_length() 检测字符串长度 x <- "The birch canoe slid on the smooth planks." x ### 1.检测字符串长度 str_length(x) #计算字符串中有多少字符 length(x) #计算向量中元素的个数 图片 图片 2. str_split 字符串拆分 x <- "The birch canoe slid on the smooth planks." x ### 2.字符串拆分 str_sp
Pandas是用于Python编程语言的开源高级数据分析和处理库。使用pandas,可以轻松加载,准备,操作和分析数据。它是用于数据分析操作的最优选和广泛使用的库之一。
1、将一张很长的表拆分成多张较小的表,使用表中某一个特定的数据字段来给这些拆分出来的表命名。
专题一:玩转字符串1.检测字符串长度x <- "The birch canoe slid on the smooth planks."xstr_length(x)#检测字符串内的字符数,空格也算length(x)#向量里面元素的个数2.字符串拆分str_split(x," ")#以空格为分隔符号将字符串拆分开x2 = str_split(x," ")[[1]];x2y = c("jimmy 150","nicker 140","tony 152")str_split(y," ")str_split(y,"
丹佛市在其开放数据目录中公开保存过去五年的犯罪数据。在本教程中,我们将使用 R 访问和可视化这些数据,这些数据本质上是具有犯罪类型、社区等特征的时空参考点。
视觉,视觉,视觉。本月的(几乎)所有有关视觉效果的内容都包含大量新视觉效果和对现有视觉效果的更新。此外,我们正在帮助用户入门引入画布水印。Power BI出现了一个闪亮的新图标,我们向Power BI Desktop初始屏幕添加了关闭选项。可视化的个性化现已普遍可用,并且我们在预览中引入了动态M查询参数。在移动端,我们(除其他外)增加了对缺口显示的支持,在服务上,我们对“新外观”体验进行了一些更新。
我们不建议使用这种方式,因为一个无效测量不代表所有测量都是无效的。此外,如果数据质量不高,若对每个变量都采取这种做法,那么你最后可能会发现数据已经所剩无几!
[1] "The birch canoe slid on the smooth planks."
领取专属 10元无门槛券
手把手带您无忧上云