可能是由于以下原因之一:
install.packages("RColorBrewer")
大家好,我是生信技能树学徒,前面我们带来了大量的表达数据挖掘实战演练,但是TCGA数据库之丰富程度,值得我们花费多年时间继续探索,现在带来的是突变全景图,如果你对之前的教程感兴趣,可以点击学习 菜鸟团(周一数据挖掘专栏)成果展
大家好,在这里给大家介绍一下使用ggplot2绘图调色的几种小方法。正所谓绘图十分钟,调色一小时。图片的配色直接决定了图片质量的好坏。下面讲一下我平时绘图用到的调色工具。
今天这篇推文我们系统介绍下颜色主题,虽然之前也有介绍过一些优秀的配色网站,也有搭配好的颜色主题可以直接参考,但有没有直接供Python或者R绘图直接使用的关于颜色设置的第三方包呢?这边推文将较为详细的介绍关于Python的R的颜色主题包,主要涉及的内容如下:
1写在前面 之前介绍了使用ggsci包进行配色,颜值很高,但有时候你可能需要更多的颜色。 本期介绍一下RColorBrewer包,万金油包,几乎适用任何情况。😘 2用到的包 rm(list = ls()) library(tidyverse) library(RColorBrewer) library(patchwork) 3示例数据 本期就用大名鼎鼎的iris吧。 dat <- iris 4查看所有配色 display.brewer.all() ---- Note! 这个包里包含3种配色,s
今天我们接着讲绘制热图时候的一个小技巧,如何显示样本的类型。我们经常还在文章中看到类似下面这样的热图。会在列的上方用颜色标注样本的类型。这样可以一目了然的看出找到的差异表达基因能否很好的将不同类型的样本区分开。今天我们就来用R代码来实现。
本期开始继续基础图表(柱形图/条形图(bar charts))的绘制推文教程,但在系列绘制之前,我们先介绍下个人较喜欢的一个绘图R包-ggchicklet包,用于绘制带圆角角度的柱形图(Rounded Segmented Column)。主要涉及的知识点如下:
❝最近在进行绘图实战颇有感触,今天来介绍一下如何使用「ggplot2绘制组合热图」,有时我们如果只想对部分数据进行热图形式的展示可以用到这种类型的图表;绘图过程倒也简单主要是选择好合适的展示场所 library(tidyverse) library(ggh4x) library(patchwork) 定义主题 theme_niwot <- function(){ theme_test()+ theme(axis.text.y=element_text(color="black",size =8
randomcoloR和paletteer的使用方式类似,都提供了直观的函数来生成和应用颜色方案。randomcoloR 包可以生成随机的颜色方案,非常适合当你需要快速创建一个颜色方案时使用。
这是一个六边形热图可视化程序,主要用到的知识RColorBrewer,fields,也就是R中的可视化绘图库。
是时候把生信技能树平台交给后辈了,前面我介绍了;ggplot2绘图基础功不扎实?看完这5个资源 有一个学员从头到尾学完了这些资源,成长为了绘图小牛,还有自己的公众号,我先邀请他投稿一个笔记,后面有机会再推荐他的公众号!
❝最近在绘制相关性网络热图的时候突然有一个小的发现,可以使用相关性热图的数据来结合「linkET」来绘图,以前一直认为为必须使用「mantel_test」才行;果然绘图还得多思考;本节就来通过一个案例将两份数据结合起来进行绘图;
安装 R 现在最新版的 R 语言是 3.6.2 版本 (2019 年 12 月 12 日发布),该发行版的名字是 Dark and Stormy Night (漆黑暴风夜 ??),事实上只要用 3.0
编译|崔浩 校对|姚佳灵 高级可视化效果 什么是Hexbin Binning? 如果在同一个地方有很多点(overplotting),我们可以使用Hexbin包。六边形面元划分是一种二元直方图,对大数量级结构的数据集的可视化非常有用。下面是代码: >library(hexbin) >a=hexbin(diamonds$price,diamonds$carat,xbins=40) >library(RColorBrewer) >plot(a) 我们也可以创建一个调色板,然后用Hexbin绘图功能以获得更
大家在绘制图的时候是不是有的时候老师纠结颜色的搭配。今天给大家介绍一个可以自动搭配颜色的R包RColorBrewer。R包的安装载入就不再赘述。直接进入主题。
[[108-R可视化32-通过seurat包中的LabelClusters学习ggplot之一]]
往期的教程里详细为大家做了R语言安装和环境配置的课程,错过的喵咪们,课前赶紧复习一下吧。生物信息系列课程-R语言入门;挖掘GEO速成SCI文章系列教程(3)-R语言基础。古语云“字如其人”,现在讲“第一印象”,说的都是形象、气质的重要作用,在科研领域而言,规范的、高质量的图片是发表高水平文章的必备条件。有请我们科研猫特聘作图系列讲师,飞飞老师~
我最近在分析胆汁酸的数据,所以想画个堆积柱状图,看看组间情况,大概的设想就是这样:
于是乎就有了今天这篇帖子,旨在搜罗网上比较全的颜色贴,好好滴总结一波,希望可以帮到同样是选择困难症的你。
一个月的备考终于结束了,公号的推文也会陆续进行原创推文制作,也希望大家继续支持哦!本期推文就介绍一篇关于使用ggplot2 绘制带有颜色映射的相关性散点图,本期涉及的知识点如下:
单细胞常见的可视化方式有DimPlot,FeaturePlot ,DotPlot ,VlnPlot 和 DoHeatmap几种 ,Seurat均可以实现,但文献中的图大多会精美很多。比如
如下所示,可以看到有多个样品,每个样品都有多个基因表达量,这个时候我们比较关心的是这些基因的表达量相关性(在多个样品),基因与基因之间有两两组合相关性:
先前我介绍过ggrepel 这个包:[[67-R可视化11-用ggrepel更加美观的添加标记(火山图的实现)]]
ggplot2是R语言最流行的第三方扩展包,是RStudio首席科学家Hadley Wickham读博期间的作品。根据其绘图理念,图形由以下几个模块组成:
让我们快速浏览一下这张图表: 这张可视化数据图(最初用Tableau软件创建 )是如何利用数据可视化来帮助决策者的一个很好的例子。想象一下,如果这些信息通过表格来告诉投资者,你认为你会花多长时间来向他
即中国疫情图之后,又来了一个小作业,作业要求是使用R平台相关绘图工具绘制全国疫情热力图(10分)。
写在最后:有时间我们会努力更新的。大家互动交流可以前去论坛,地址在下面,复制去浏览器即可访问,弥补下公众号没有留言功能的缺憾。原地址暂未启用(bioinfoer.com)。
对于时间序列的数据我们通常用Spaghetti Plots进行展示,但是由于大量的纵向数据的重叠性,我们引入了Lasagna Plots来展示数据的层次性。今天就为大家介绍下LasagnaPlots的实现,我们需要用到包lasagnar,接下来我们看下包的安装:
散点图(scatter graph、point graph、X-Y plot、scatter chart )是科研绘图中最常见的图表类型之一,通常用于显示和比较数值。散点图是使用一系列的散点在直角坐标系中展示变量的数值分布。在二维散点图中,可以通过观察两个变量的数据变化,发现两者的关系与相关性。
今天给大家介绍一个快速绘制火山图(volcano map) 拓展工具包-ggVolcano,绘图结果为ggplot2对象,也就可以灵活进行相关主题的设置。详细介绍如下:
这张可视化数据图(最初用Tableau软件创建 )是如何利用数据可视化来帮助决策者的一个很好的例子。想象一下,如果这些信息通过表格来告诉投资者,你认为你会花多长时间来向他解释? 如今的世界里,随着数
本次绘图是对《R语言绘制中国地图:着色省份、标注省份名称地图》中基础地图数据缺失(链接失效)的更新,基础地图数据来源《R语言 地图数据更新(来自高德 阿里云)》
上一篇文章,我们使用了Python 自定义IDW插值函数进行了IDW空间插值及可视化的plotnine、Basemap的绘制方法(Python - IDW插值计算及可视化绘制),本期推文我们将使用R-gstat进行IDW插值计算和使用ggplot2进行可视化绘制,主要涉及的知识点如下:
此次例子,我们选择了一套GEO数据库的肺癌数据,数据编号为GSE19804,120个样本,其中包含60个癌症样本和60个癌旁正常样本,前面我们使用t检验,并对p值进行BH校正,筛选fdr小于0.01的基因中前40个在癌症相对于正常样本中显著差异表达的基因进行热图绘制。
流式细胞术通过光学检测系统快速检测多参数的细胞流。许多因素使得流式细胞术能够成功和广泛的应用,比如检测速度(能够允许大量的细胞被检测),高度的准确性和分辨率,低成本。此外,流式细胞术还是一种非破坏性技术,可以分选出活细胞用于后续分析。能够分析和分选单个细胞的能力使流式细胞术在生物学和医学领域有非常广泛的应用。
上次介绍了使用geomnet包绘制网络图的文章geomnet | 这样惊艳的网络图一键搞定,真好用...今天继续给大家推荐另外一个可视化工具-「ggnet2」
开头一个小tips:在运行R project时,界面上最好每次只有一个脚本,否则不同脚本之间流程、变量容易混乱
在上一章中我们讲过plot()绘图的基本结构,主要通过type参数来设置绘制图形的类型。
这次的教程的重点就是R语言中处理图形的一般方法,包括了图形的创建和保存、图形特征的修改、一些图形处理的通用方法(后面还会重点关注特定类型的图形)以及图形组合的各种方法。
二维统计直方图的变量x和y的类型必须是数值型。在x和y轴找到各自的最大值和最小值,使得测定的所有数据都包含在【Xmin,Xmax】,【Ymin,Ymax】之间。再把X和Y的区间分成若干个小区间,统计测量的数据值出现在各个小区间的频数,就是相当于图中每个方块bin的颜色就是测定数据值出现在该位置区间的频数。
发文章,写论文,分组统计检验直方图是最常见和最实用的,你是否还在烦恼如果把图画好,帮你解决困难啦!这里分享下同事新鲜写就的绘图脚本,自带了示例数据,可以一键出图,助力你的科研和学习。
决策树是一种非常有用的分类方法,它能够对新出现的对象给出正确的分类。比起文本描述的规则,我们更希望能使用图形来直观展示决策树的结果,这就是本文介绍的重点——决策树结果可视化。
1写在前面 我们在画图的时候经常需要标记某个值, 如散点图中的某个具体的点, 火山图中的某个基因, 但对于代码不太熟悉的小白来说, 还是有一定难度的.🤪 本期和大家介绍一个基于shiny轻松进行label的包, 即easylabel包, 轻松实现交互式label, 麻麻再也不用担心你的画图标记啦.😗 2用到的包 rm(list = ls()) # devtools::install_github("myles-lewis/easylabel") library(easylabel) library(tidy
层次聚类(hierarchical clustering)就是通过对数据集按照某种方法进行层次分解,直到满足某种条件为止,常用的方法有UPGMA、ward.D2等。聚类树是层次聚类最常用的可视化方法,我们可通过比较聚类来确定最佳分类,详见往期文章层次聚类与聚类树和比较聚类。
领取专属 10元无门槛券
手把手带您无忧上云