首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Pandas groupby如何使用加法聚合一列列表?

Pandas是一个强大的数据分析库,在数据聚合和转换方面提供了很多功能。使用groupby方法可以对数据进行分组,并进行各种聚合操作,包括加法聚合。

下面是使用Pandas的groupby方法进行加法聚合的示例代码:

代码语言:txt
复制
import pandas as pd

# 创建示例数据
data = {'Name': ['Tom', 'Nick', 'John', 'Tom', 'John'],
        'Age': [28, 32, 25, 35, 29],
        'Score': [75, 85, 90, 82, 88]}

df = pd.DataFrame(data)

# 使用groupby和sum进行加法聚合
result = df.groupby('Name')['Score'].sum()

print(result)

上述代码中,首先创建了一个包含姓名、年龄和成绩的示例数据。然后,使用groupby方法对数据按照姓名进行分组,并选择需要聚合的列为'Score'。最后,调用sum方法对分组后的数据进行加法聚合,得到每个姓名对应的总成绩。

运行以上代码,输出结果如下:

代码语言:txt
复制
Name
John    178
Nick     85
Tom     157
Name: Score, dtype: int64

这个结果展示了每个姓名对应的总成绩。可以看到,'John'的总成绩为178,'Nick'的总成绩为85,'Tom'的总成绩为157。

Pandas的groupby方法还支持其他常用的聚合操作,例如平均值(mean)、最大值(max)、最小值(min)等,可以根据实际需求选择合适的聚合操作。

关于Pandas的更多信息和用法,请参考腾讯云的产品文档:Pandas使用指南

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • pandas之分组groupby()的使用整理与总结

    文章目录 前言 准备 基本操作 可视化操作 REF 前言 在使用pandas的时候,有些场景需要对数据内部进行分组处理,如一组全校学生成绩的数据,我们想通过班级进行分组,或者再对班级分组后的性别进行分组来进行分析...,这时通过pandas下的groupby()函数就可以解决。...在使用pandas进行数据分析时,groupby()函数将会是一个数据分析辅助的利器。...groupby的作用可以参考 超好用的 pandasgroupby 中作者的插图进行直观的理解: 准备 读入的数据是一段学生信息的数据,下面将以这个数据为例进行整理grouby()函数的使用...Score Gender Female 19.0 95.666667 Male 19.6 89.000000 如果其中的函数无法满足你的需求,你也可以选择使用聚合函数

    2.1K10

    pandas之分组groupby()的使用整理与总结

    前言 在使用pandas的时候,有些场景需要对数据内部进行分组处理,如一组全校学生成绩的数据,我们想通过班级进行分组,或者再对班级分组后的性别进行分组来进行分析,这时通过pandas下的groupby(...在使用pandas进行数据分析时,groupby()函数将会是一个数据分析辅助的利器。 groupby的作用可以参考 超好用的 pandasgroupby 中作者的插图进行直观的理解: ?...准备 读入的数据是一段学生信息的数据,下面将以这个数据为例进行整理grouby()函数的使用: import pandas as pd import numpy as np import matplotlib.pyplot...100 Age Score Gender Female 19.0 95.666667 Male 19.6 89.000000 如果其中的函数无法满足你的需求,你也可以选择使用聚合函数...REF groupby官方文档 超好用的 pandasgroupby 到此这篇关于pandas之分组groupby()的使用整理与总结的文章就介绍到这了,更多相关pandas groupby()

    2.9K20

    Pandas中实现聚合统计,有几种方法?

    对于上述仅有一种聚合函数的例子,在pandas中更倾向于使用groupby直接+聚合函数,例如上述的分组计数需求,其实就是groupby+count实现。...03 groupby+agg 上述方法是直接使用groupby+相应的聚合函数,这种聚合统计方法简单易懂,但缺点就是仅能实现单一的聚合需求,对于有多种聚合函数的情况是不适用的。...agg函数主要接收两个参数,第一个参数func用于接收聚合算子,可以是一个函数名或对象,也可以是一个函数列表,还可以是一个字典,使用方法很是灵活;第二参数axis则是指定聚合所沿着的轴向,默认是axis...这里,仍然以上述分组计数为例,讲解groupby+agg的三种典型应用方式: agg内接收聚合函数或聚合函数列表。具体实现形式也分为两种,与前面groupby直接+聚合函数的用法类似。...而后,groupby后面接的apply函数,实质上即为对每个分组下的子dataframe进行聚合,具体使用何种聚合方式则就看apply中传入何种参数了!

    3.1K60

    pandas基础:使用Python pandas Groupby函数汇总数据,获得对数据更好地理解

    标签:Python与Excel, pandas 在Python中,pandas groupby()函数提供了一种方便的方法,可以按照我们想要的任何方式汇总数据。...实际上,groupby()函数不仅仅是汇总。我们将介绍一个如何使用该函数的实际应用程序,然后深入了解其后台的实际情况,即所谓的“拆分-应用-合并”过程。...图3 实际上,我们可以使用groupby对象的.agg()方法将上述两行代码组合成一行,只需将字典传递到agg()。字典键是我们要处理的数据列,字典值(可以是单个值或列表)是我们要执行的操作。...现在,你已经基本了解了如何使用pandas groupby函数汇总数据。下面讨论当使用该函数时,后台是怎么运作的。...Pandas groupby:拆分-应用-合并的过程 本质上,groupby指的是涉及以下一个或多个步骤的流程: Split拆分:将数据拆分为组 Apply应用:将操作单独应用于每个组(从拆分步骤开始)

    4.7K50

    盘点一道使用pandas.groupby函数实战的应用题目

    一开始以为只是一个简单的去重问题而已,【编程数学钟老师】大佬提出使用set函数,后来有粉丝发现其实没有想的这么简单。目前粉丝就需要编号,然后把重复的编号删除,但是需要保留前边的审批意见。...这么来看,使用set集合的办不到了。 二、实现过程 这里给出两个解决方法,一起来看看吧。...方法一 这个方法来自【(这是月亮的背面)】大佬提供的方法,使用pandas中的groupby函数巧妙解决,非常奈斯!...下面给出了一个优化代码,因为原始数据有空白单元格,如下图所示: 所以需要额外替换下,代码如下: data['审批意见'] = data['审批意见'] + ',' data = data.groupby...这篇文章基于粉丝提问,在实际工作中运用Python工具实现了数据批量分组的问题,在实现过程中,巧妙的运用了pandas.groupby()函数,顺利的帮助粉丝解决了问题,加深了对该函数的认识。

    61230

    数据导入与预处理-第6章-02数据变换

    连续属性变换成分类属性涉及两个子任务:决定需要多少个分类变量,以及确定如何将连续属性值映射到这些分类值。...() 2.3.1.1 分组操作 pandas使用groupby()方法根据键将原数据拆分为若干个分组。...使用pandasgroupby()方法拆分数据后会返回一个GroupBy类的对象,该对象是一个可迭代对象,它里面包含了每个分组的具体信息,但无法直接被显示。...df_obj.groupby(["key"]).get_group(("A")) 输出为: 2.3.1.2 分组+内置聚合 分组+自定义聚合: # 分组+自定义聚合 import pandas...输出为: 指定列聚合 # 使用agg()方法聚合分组中指定列的数据 groupby_obj.agg({'a':'max', 'c':'sum', 'e': my_range}) 输出为:

    19.3K20

    DataFrame和Series的使用

    中的列表非常相似,但是它的每个元素的数据类型必须相同 创建 Series 的最简单方法是传入一个Python列表 import pandas as pd s = pd.Series([ ' banana...df按行加载部分数据:先打印前5行数据 观察第一列 print(df.head()) 最左边一列是行号,也就是DataFrame的行索引 Pandas默认使用行号作为行索引。...先将数据分组 对每组的数据再去进行统计计算如,求平均,求每组数据条目数(频数)等 再将每一组计算的结果合并起来 可以使用DataFrame的groupby方法完成分组/聚合计算 df.groupby...,形成二维数据聚合 df.groupby(['continent'])['country'].nunique() df.groupby('continent')['lifeExp'].max() # 可以使用...数据中筛序出一列 df.groupby(‘continent’)[字段].mean() seriesGroupby对象再调用mean()/其它聚合函数

    10710

    机器学习库:pandas

    和DataFrame,在机器学习中主要使用DataFrame,我们也重点介绍这个 DataFrame dataframe是一个二维的数据结构,常用来处理表格数据 使用代码 import pandas as...,我们想知道不同年龄的数量分别有多少,这时就可以使用value_counts函数了,它可以统计某一列的值的数量 import pandas as pd df = pd.DataFrame({'name...函数的作用 groupby函数的参数是决定根据哪一列来进行分组的 import pandas as pd df = pd.DataFrame({'str': ['a', 'a', 'b', 'b',...("str"))) 如上图所示,groupby函数返回的是一个分组对象,我们使用list函数把它转化成列表然后打印出来,可以看到成功分组了,我们接下来会讲解如何使用聚合函数求和 聚合函数agg 在上面的例子中我们已经分好了组...处理缺失值 查找缺失值 isnull可以查找是否有缺失值,配合sum函数可以统计每一列缺失值的数量 import pandas as pd a = {"a": [1, 3, np.NAN, 3],

    13410

    Pandasgroupby的这些用法你都知道吗?

    前期,笔者完成了一篇pandas系统入门教程,也针对几个常用的分组统计接口进行了介绍,今天再针对groupby分组聚合操作进行拓展讲解。 ?...01 如何理解pandas中的groupby操作 groupbypandas中用于数据分析的一个重要功能,其功能与SQL中的分组操作类似,但功能却更为强大。...),执行更为丰富的聚合功能,常用列表、字典等形式作为参数 例如需要对如上数据表中两门课程分别统计平均分和最低分,则可用列表形式传参如下: ?...的每个元素(标量);面向dataframe对象,apply函数的处理粒度是dataframe的一行或一列(series对象);而现在面向groupby后的group对象,其处理粒度则是一个分组(dataframe...另外,还可将groupby与resample链式使用,但仅可以是resample在groupby之后,反之则会报错。例如: ?

    4.1K40

    Pandas学习笔记05-分组与透视

    pandas提供了比较灵活的groupby分组接口,同时我们也可以使用pivot_table进行透视处理。 1.分组 分组函数groupby,对某列数据进行分组,返回一个Groupby对象。 ?...使用函数进行分组 2.聚合 常见的聚合函数如下: 计算组的平均值 ? 演示数据 简单的分组聚合操作 ? 分组聚合 同时使用多种聚合方法 ? 同时使用多种聚合方法 对聚合结果列进行命令 ?...不同的聚合方法 3.数据透视 数据透视采用pivot_table方法,和excel数据透视表功能类似,其实可以和groupby分组统计进行相互转化 它带有许多参数: data:一个DataFrame对象...values:要汇总的一列一列列表。 index:与数据或它们的列表具有相同长度的列,Grouper,数组。在数据透视表索引上进行分组的键。如果传递了数组,则其使用方式与列值相同。...columns:与数据或它们的列表具有相同长度的列,Grouper,数组。在数据透视表列上进行分组的键。如果传递了数组,则其使用方式与列值相同。

    1K30

    Pandas 进行数据处理系列 二

    a_name','bname']] ,里面需要是一个 list 不然会报错增加一列df['new']=list([...])对某一列除以他的最大值df['a']/df['a'].max()排序某一列df.sorted_values...对分组后的数据进行聚合 import pandas as pd df = pd.DataFrame({'Country': ['China', 'China', 'India', 'India',...('Country').agg(['min', 'mean', 'max']) print(df_agg) 对分组后的部分列进行聚合 import pandas as pd df = pd.DataFrame...('Country').agg(num_agg)) 补充 对于聚合方法的传入和传出,可以使用 ['min'] ,也可以使用 numpy 中的方法,比如 numpy.min ,也可以传入一个方法,比如:...('ss').agg(max_deviation).round(1).head() 对于聚合后的数据表格,是多级索引,可以重新定义索引的数据 import pandas as pd df = pd.DataFrame

    8.1K30

    pandas中的这几个函数,我看懂了道家“一生二、二生三、三生万物”

    而其中的几个聚合统计函数,不仅常用更富有辩证思想,细品之下不禁让人拍手称快、直呼叫好! ? 本文主要讲解pandas中的7个聚合统计相关函数,所用数据创建如下: ?...当然,groupby的强大之处在于,分组依据的字段可以不只一列。例如想统计各班每门课程的平均分,语句如下: ? 不只是分组依据可以用多列,聚合函数也可以是多个。...另外,groupby的分组字段和聚合函数都还存在很多其他用法:分组依据可以是一个传入的序列(例如某个字段的一种变形),聚合函数agg内部的写法还有列表和元组等多种不同实现。...数据透视表本质上仍然数据分组聚合的一种,只不过是以其中一列的唯一值结果作为行、另一列的唯一值结果作为列,然后对其中任意(行,列)取值坐标下的所有数值进行聚合统计,就好似完成了数据透视一般。...pivot_table函数参数列表如下: ?

    2.5K10

    groupby函数详解

    分组键为列名,引入列表list[] df[‘data1’].groupby(df[‘key1’]).mean() 按某一列进行一重聚合求均值 分组键为Series A=df[‘订单编号’].groupby...([ df[‘运营商’], df[‘分类’], df[‘百度圣卡’] ]).count() 按某一列进行多重聚合计数 分组键为Series,引入列表list[] df[‘data1’].groupby(...1 groupby()核心用法 (1)根据DataFrame本身的某一列或多列内容进行分组聚合,(a)若按某一列聚合,则新DataFrame将根据某一列的内容分为不同的维度进行拆解,同时将同一维度的再进行聚合...(len).sum() #将字符串长度相同的行进行求和 分组键为函数和数组、列表、字典、Series的组合 引入列表list[ ] 将函数跟数组、列表、字典、Series混合使用作为分组键进行聚合,因为任何东西最终都会被转换为数组...范例一:根据DataFrame本身的某一列或多列内容进行分组聚合 #创建原始数据集 import pandas as pd import numpy as np df=pd.DataFrame({

    3.7K11
    领券