马尔科夫链在解决问题时有什么用?当你想对处于离散状态的事物建模时,David Eastman 写道。...马尔可夫是一位俄罗斯数学家(也是一名出色的国际象棋选手),他在过程和概率方面的研究早于现代计算,但此后一直被人们心存感激地利用。...以下是维基百科对马尔可夫链的定义:“马尔可夫链或马尔可夫过程是一个随机模型,描述一系列可能的事件,其中每个事件的概率仅取决于前一个事件中达到的状态。”...每个当前状态(即行)的总概率为 1。 那么,什么时候马尔可夫链对于解决问题是有用的呢?基本上,当你想要对处于离散状态的事物进行建模时,但你不知道它是如何工作的。...马尔可夫链在人工智能中的应用 马尔可夫链被用于预测文本的设计。随着模型获得并输入更多单词,一组新的统计数据将附加到更新的马尔可夫链中。 注意,即使添加了额外的单词,字母表中的字母也不会改变。
0.7,试求他被雨淋湿的机会....当下雨才用伞,每天下雨是独立事件,在此马尔可夫链中,用 表示状态量,当 大于0时,转移概率为 (下雨从手边带一把伞走), (只是去了另一边,不带伞),因此转移矩阵为: 设平稳状态概率分别为...根据转移矩阵容易求得 淋雨的概率 则为 约等于 0.0913 python模拟 模拟这个人上班回家往返 n 次,那么出行次数是 2n 每次下雨的概率就是 0.7。...设最开始伞都在家里,则出门的时候向是否下雨的状态问询,记录下淋雨的次数。...被淋雨的次数 get_wet = 0 # A点伞的数量 a_um = 2 # B点伞的数量 b_um =0 # 出门/回家 status = ['go', 'back'] for i in range
对于这个项目,我们将专门使用马尔可夫链来完成。马尔可夫过程是许多涉及书面语言和模拟复杂分布样本的自然语言处理项目的基础。...但是天气会改变状态是有可能的(30%),所以我们也将其包含在我们的马尔可夫链模型中。 马尔可夫链是我们这个文本生成器的完美模型,因为我们的模型将仅使用前一个字符预测下一个字符。...使用马尔可夫链的优点是,它是准确的,内存少(只存储1个以前的状态)并且执行速度快。...文本生成的实现 这里将通过6个步骤完成文本生成器: 生成查找表:创建表来记录词频 将频率转换为概率:将我们的发现转换为可用的形式 加载数据集:加载并利用一个训练集 构建马尔可夫链:使用概率为每个单词和字符创建链...5、文本采样 创建一个抽样函数,它使用未完成的单词(ctx)、第4步中的马尔可夫链模型(模型)和用于形成单词基的字符数量(k)。
渠道归因(二)基于马尔可夫链的渠道归因 在应用当中,序列中的每个点通常映射为一个广告触点,每个触点都有一定概率变成真正的转化。通过这种建模,可以选择最有效,概率最高的触点路径。...这种方法需要较多的数据,计算也比较复杂。本文主要参考自python实现马尔可夫链归因[1]。 马尔可夫链是一个过程,它映射运动并给出概率分布,从一个状态转移到另一个状态。...马尔可夫链由三个属性定义: 状态空间:处理可能存在的所有状态的集合 转移概率:从一个状态转移到另一个状态的概率 当前状态分布 :在过程开始时处于任何一个状态的概率分布 那么用户行为路径中的每个渠道可以看作这里的每个状态...在知道状态空间的情况下,所求的渠道贡献率就是每条路径的转移概率。所以马尔可夫链模型可以用来做归因分析。...共勉~ 参考资料 [1] python实现马尔可夫链归因: https://mattzheng.blog.csdn.net/article/details/117296062
一个常见的例子是r/SubredditSimulator,它使用马尔可夫链来自动创建整个subreddit的内容。...总的来说,马尔可夫链在概念上是相当直观的,并且非常容易理解,因为它们可以在不使用任何高级统计或数学概念的情况下实现。它们是学习概率建模和数据科学技术的好方法。 ?...你现在可以利用这个分布,根据当时的天气状况来预测未来几天的天气。 这个例子说明了马尔可夫链的许多关键概念。马尔可夫链本质上由一组转移组成,这些转移由一些满足马尔可夫性质的概率分布决定。...如果编码不是你的强项,那么还有很多更高级的马尔可夫链和马尔可夫过程的特征可以去深入研究。在我看来,沿着理论路线的自然前进方向是隐藏的马尔可夫过程或MCMC。...简单的马尔可夫链是其他更复杂的建模技术的构建模块,因此,通过这些知识,你现在可以在诸如信念建模和取样等主题中使用各种技术。
p=5383 介绍 在这篇文章中,我们看看什么是渠道归因,以及它如何与马尔可夫链的概念联系起来。我们还将通过一个电子商务公司的案例研究来理解这个概念在理论上和实践上如何运作(使用R)。...P(转换)= P(C1→C2→C3→转换)+ P(C2→C3→转换) = 0.5 * 0.5 * 1 * 0.6 + 0.5 * 1 * 0.6 = 0.15 + 0.3 = 0.45 马尔可夫链 马尔可夫链是一个过程...这 事实上,这是一个马尔可夫链的应用。我们稍后会回来; 现在让我们坚持我们的例子。如果我们要弄清楚渠道1在我们的客户从始至终转换的旅程中的贡献,我们将使用去除效果的原则。...客户旅程是一系列渠道,可以看作是一个有向马尔可夫图中的一个链,其中每个顶点都是一个状态(渠道/接触点),每条边表示从一个状态移动到另一个状态的转移概率。...这种情况使我们对客户分析领域马尔可夫链模型的应用有了很好的了解。电子商务公司现在可以自信地创建他们的营销策略,并使用数据驱动的见解分配他们的营销预算。
其基本假设是你可以创建一个递归神经网络一个字符一个字符地学习语言特征。但是这个结果模型与为同样目的设计的马尔可夫链有什么不同呢?我用R实现了一个字符-字符的马尔可夫链来一探究竟。 ?...哪些片段是来自于RNN,哪些又是来自于马尔可夫链?可以注意到Karpathy的例子来自于全集,而我的马尔可夫链来自于微小莎士比亚集(大约是前者的四分之一),因为我比较懒。...在生成文本时,我们可以把这个作为预测值,或者使用概率密度函数来支配采样。我选择后者因为它更有趣。 但是在马尔可夫链中状态如何捕获呢?因为马尔可夫链是无状态的。...很简单:我们使用一个字符序列而不是单独字符作为输入。在这篇文章中,我使用了长度为5的序列,那么马尔可夫链基于前面5个状态来选择下一状态。这是在作弊吗?还是这就是RNN中隐藏层的作用吗?...注:我没有使用包来训练和运行马尔可夫链,因为它低于20 LOC。这段代码的一个版本将会出现在我即将出版的一本书中。
p=3603 这篇文章的目的是将我的日常工作和R相结合。 如果我们有一些根据固定概率随时间在状态之间切换的对象,我们可以使用马尔可夫链 来模拟该对象的长期行为。 一个很好的例子是抵押贷款。...让我们假设每个当前贷款的时间T有75%的可能性保持,10%的违约机会,15%的机会在T + 1时间内偿还。这些转换概率在上图中列出。 ?...如果我们重复这个过程28次(在代码中完成)并绘制点,我们得到上面绘制的时间序列。更多的贷款得到了偿还而不是违约。 ---- 使用马尔可夫链来模拟抵押贷款有许多缺点。...这个模型假设我在我的例子中使用的所有100个贷款的转移概率是相同的。实际上,贷款并不相同(例如,借入一笔贷款的信用评分可能比另一笔贷款高得多。...这种差异会使前者的违约机会低很多),而且转移概率在贷款的整个生命周期中并不是一成不变的。然而,我将该曲线与我在工作中的经验数据进行了比较,结果非常相似。 非常感谢您阅读本文,有任何问题请联系我们!
对于一般的分布的采样,在很多的编程语言中都有实现,如最基本的满足均匀分布的随机数,但是对于复杂的分布,要想对其采样,却没有实现好的函数,在这里,可以使用马尔可夫链蒙特卡罗(Markov Chain Monte...Carlo, MCMC)方法,其中Metropolis-Hastings采样和Gibbs采样是MCMC中使用较为广泛的两种形式。...MCMC的基础理论为马尔可夫过程,在MCMC算法中,为了在一个指定的分布上采样,根据马尔可夫过程,首先从任一状态出发,模拟马尔可夫过程,不断进行状态转移,最终收敛到平稳分布。...一、马尔可夫链 1、马尔可夫链 image.png 2、转移概率 image.png 3、马尔可夫链的平稳分布 image.png 二、马尔可夫链蒙特卡罗方法 1、基本思想 image.png 2、细致平稳条件...参考文献 1、马尔可夫链蒙特卡罗算法 2、受限玻尔兹曼机(RBM)学习笔记(一)预备知识 3、LDA数学八卦
对于一般的分布的采样,在很多的编程语言中都有实现,如最基本的满足均匀分布的随机数,但是对于复杂的分布,要想对其采样,却没有实现好的函数,在这里,可以使用马尔可夫链蒙特卡罗(Markov Chain...一、马尔可夫链 1、马尔可夫链 设XtX_t表示随机变量XX在离散时间tt时刻的取值。...马尔可夫链指的是在一段时间内随机变量XX的取值序列(X0,X1,⋯,Xm)\left ( X_0,X_1,\cdots ,X_m \right ),它们满足如上的马尔可夫性质。...二、马尔可夫链蒙特卡罗方法 1、基本思想 对于一个给定的概率分布P(X)P\left (X \right ),若是要得到其样本,通过上述的马尔可夫链的概念,我们可以构造一个转移矩阵为P\mathbf{P...}的马尔可夫链,使得该马尔可夫链的平稳分布为P(X)P\left (X \right ),这样,无论其初始状态为何值,假设记为x0x_0,那么随着马尔科夫过程的转移,得到了一系列的状态值,如:x0,x1
3 马尔可夫链的对抗性训练 对于任意θ,即使πθ因为唯一的静态分布而存在,大多数情况下直接计算 x 分布的实际似然度仍然是十分困难的。...该关系可正式表述为以下关系式: 在我们的预设中,我们选择 z ∼ π 0,并令 Gθ(z) 为 t 步后的马尔可夫链状态,如果 t 足够大的话,那么 Gθ(z) 就是πθ良好的近似值。...然而,我们遇到了优化方面的问题,因为需要求沿整条马尔可夫链反向传播的梯度,这就导致了梯度更新极其昂贵,即因为梯度估计量的大方差而降低的收敛速度。...样本在 tˆ步时,给定一个带小量随机扰动的数据样本 x ∼ pd。 直观讲,第一个条件鼓励马尔可夫链在(长度 t 的)相对短的运行中向 pd 收敛。...通过利用带有更低方差的评估梯度,平均上,生成器将只运行 (t¯ + tˆ)/2 步,而不是从链中取样直至收敛,如果最初的马尔可夫链的混合需要多步操作,这将极其费时。 4 实验 图 1.
p=5383 最近我们被客户要求撰写关于马尔可夫链的研究报告,包括一些图形和统计输出。...在这篇文章中,我们看看什么是渠道归因,以及它如何与马尔可夫链的概念联系起来 我们还将通过一个电子商务公司的案例研究来理解这个概念如何在理论上和实践上运作(使用R)。 什么是渠道归因?...这看起来与马尔可夫链相似。 事实上,这是一个马尔可夫链的应用。如果我们要弄清楚渠道1在我们的客户从始至终转换的过程中的贡献,我们将使用去除效果的原则。...创建一个特定格式的变量'路径',可以作为模型的输入。另外,我们将使用“dplyr”包找出每条路径的总发生次数。...这种情况使我们对客户分析领域马尔可夫链模型的应用有了很好的了解。电子商务公司现在可以更准确地创建他们的营销策略,并使用数据驱动的见解分配他们的营销预算
p=9686 ---- 在本文中,将对“牛市”和“熊市”两个独立机制下的市场收益进行模拟。隐马尔可夫模型识别处于特定状态的概率。...在概述了模拟数据的过程之后,将隐马尔可夫模型应用于美国股票数据,以确定基本机制。 市场体制 将隐马尔可夫模型应用于状态检测是棘手的,因为该问题实际上是无监督学习的一种形式。...: plot(returns, type="l", xlab='', ylab="Returns") [R 在此阶段,可以使用Expectation Maximization算法指定隐马尔可夫模型并进行拟合...使用quantmod库下载: 绘制gspcRets时间序列显示2008和2011时期: plot(gspcRets) [ 使用EM算法拟合隐马尔可夫模型。...每种方案的收益率和后验概率作图: 请注意,在2004年和2007年期间,市场较为平静,因此在此期间,隐马尔可夫模型第二种机制的可能性较高。然而,在2007年至2009年之间,由于次贷危机。
每个数据科学家一旦开始研究统计模型,就会遇到马尔可夫链和马尔可夫过程这两个术语。本文将以一种易于理解的方式解释马尔可夫过程的基本概念。...文章主旨 本文旨在解释以下关键主题: 什么是马尔可夫过程? 什么是马尔可夫链? 马尔可夫链实例 什么是平稳马尔可夫链分布? 什么是马尔可夫过程? 让我们考虑一个物体以随机的方式移动。...这是最重要的概念。 马尔可夫性质是无记忆的,这就引出了马尔可夫链的概念。 什么是马尔可夫链? 让我们考虑一个物体以随机的方式移动,对象(或系统)的状态可以更改。...因此,未来转变的可能性并不依赖于过去的状态。它们只取决于当前的状态。这就是我们认为它没有记忆的原因。 马尔可夫链是一个具有马尔可夫性质的随机过程。 马尔可夫链表示物体的随机运动。...马尔可夫链的概率分布可用行向量π表示,如下所示: ? 概率分布加起来是1。 有了这些信息,我们可以开始更好地理解这个过程。随着时间的推移,我们可以开始估计物体处于特定状态的概率。
这篇文章介绍了马尔可夫链蒙特卡洛在Python中入门级的应用操作,这个实际应用最终也使我学会使用这个强大的建模分析工具。...创建这个模型,我们通过数据和马尔可夫链蒙特卡洛去寻找最优的alpha和beta系数估计。 马尔可夫链蒙特卡洛 马尔可夫链蒙特卡罗是一组从概率分布中抽样,从而建立最近似原分布的函数的方法。...马尔可夫链(Markov Chain) 马尔可夫链是一个“下个状态值只取决于当前状态”的过程。(在这里,一个状态指代当前时间系数的数值分配)。...这些图叫做轨迹图,可以看到每个状态都与其历史状态相关,即马尔可夫链;同时每个值剧烈波动,即蒙特卡洛抽样。 使用MCMC时,常常需要放弃轨迹图中90%的值。...结论 我想再次强调,完成这个项目让我体会到解决问题的重要性,尤其是有现实应用意义的项目!在我尝试使用马尔可夫链蒙特卡洛来端到端建立贝叶斯推论的时候,我重新熟悉了许多基础知识,并且非常享受这个过程。
p=17375 为了帮助客户使用POT模型,本指南包含有关使用此模型的实用示例。本文快速介绍了极值理论(EVT)、一些基本示例,最后则通过案例对河流的极值进行了具体的统计分析。...使用马尔可夫链对依赖关系结构进行建模 超越的马尔可夫链进行超过阈值的峰分析的经典方法是使GPD拟合最大值。但是,由于仅考虑群集最大值,因此存在数据浪费。...主要思想是使用马尔可夫链对依赖关系结构进行建模,而联合分布显然是多元极值分布。这个想法是史密斯等人首先提出的。(1997)。在本节的其余部分,我们将只关注一阶马尔可夫链。...因此,所有超出的可能性为: ? 对于我们的应用程序,我们模拟具有极值依赖结构的一阶马尔可夫链。...时间序列的移动平均窗口 从初始时间序列ts计算“平均”时间序列。这是通过在初始时间序列上使用长度为d的移动平均窗口来实现的。
p=17375 为了帮助客户使用POT模型,本指南包含有关使用此模型的实用示例。本文快速介绍了极值理论(EVT)、一些基本示例,最后则通过案例对河流的极值进行了具体的统计分析。...使用马尔可夫链对依赖关系结构进行建模 超越的马尔可夫链进行超过阈值的峰分析的经典方法是使GPD拟合最大值。但是,由于仅考虑群集最大值,因此存在数据浪费。...主要思想是使用马尔可夫链对依赖关系结构进行建模,而联合分布显然是多元极值分布。这个想法是史密斯等人首先提出的。(1997)。在本节的其余部分,我们将只关注一阶马尔可夫链。...因此,所有超出的可能性为: 对于我们的应用程序,我们模拟具有极值依赖结构的一阶马尔可夫链。...时间序列的移动平均窗口 从初始时间序列ts计算“平均”时间序列。这是通过在初始时间序列上使用长度为d的移动平均窗口来实现的。
提到自然语言的生成时,人们通常认为要会使用高级数学来思考先进的AI系统,然而,并不一定要这样。在这篇文章中,我将使用马尔可夫链和一个小的语录数据集来产生新的语录。...马尔可夫链 马尔可夫链是一个只根据先前事件来预测事件的随机模型。举一个简单的例子:我的猫可能的状态变化。我有一只猫,它一般都是在吃、睡或者玩。它大多时间在睡觉。不过,她偶尔会醒来吃点东西。...马尔可夫链的文本生成 马尔可夫链文本生成的思想与此相同,即试图找出某个词出现在另一个词之后的概率。为了确定转换的概率,我们用一些例句来训练模型。 打个比方,我们可以用下面的句子来训练一个模型。...break else: words = model[generated[-1]] generated.append(random.choice(words)) 我现在使用马尔可夫链生成的是鸡汤文...如果你对此感兴趣,同样可以通过将两位领导人的演讲作为训练数据提供给马尔可夫链文本生成器来生成混合体会说的内容。
学习和使用语言模型的过程称为语言建模。 n-gram 模型是一种基本模型,它假设每个位置的单词仅取决于前 n-1 个位置的单词。也就是说,该模型是一个 n–1 阶马尔可夫链。...马尔可夫链模型非常简单,只涉及两个状态之间的转移概率。马尔可夫证明,如果根据转移概率在两个状态之间跳跃,则访问两个状态的频率将收敛到期望值,这是马尔可夫链的遍历定理。...去掉空格和标点符号,将小说的前 20000 个俄语字母分为元音和辅音,他得到了小说中的元音和辅音序列。然后,马尔可夫使用纸和笔计算元音和辅音之间的转换概率。然后,使用数据验证最简单马尔可夫链的特征。...非常有趣的是,马尔可夫链的初始应用领域是语言。马尔可夫模型是最简单的语言模型。 香农和语言模型 1948 年,克劳德 · 香农发表了开创性的论文《通信的数学理论》,开创了信息论领域。...有限马尔可夫链(或 n-gram 模型)背后的「语法」是有限状态语法。有限状态语法在生成英语句子方面确实有局限性。 然而,有限状态语法不能描述所有的语法关系组合,有些句子无法涵盖。
使用马尔可夫链对依赖关系结构进行建模超越的马尔可夫链进行超过阈值的峰分析的经典方法是使GPD拟合最大值。但是,由于仅考虑群集最大值,因此存在数据浪费。...主要思想是使用马尔可夫链对依赖关系结构进行建模,而联合分布显然是多元极值分布。这个想法是史密斯等人首先提出的。(1997)。在本节的其余部分,我们将只关注一阶马尔可夫链。...因此,所有超出的可能性为:对于我们的应用程序,我们模拟具有极值依赖结构的一阶马尔可夫链。...本文选自《R语言有极值(EVT)依赖结构的马尔可夫链(MC)对洪水极值分析》。...马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型Matlab马尔可夫区制转换动态回归模型估计GDP增长率R语言极值推断:广义帕累托分布GPD使用极大似然估计
领取专属 10元无门槛券
手把手带您无忧上云