首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Robust多模态模型的开发

Robust 多模态模型:寻找遗失的模态! ​ 近年来,随着网络视频的大量涌现,各种多模态任务日益备受关注。...同时,我在流行的多模态任务–多模态情感计算的数据集上对模型进行了测试,得到了不错的效果,证明了该模型的可靠性。...研究背景 随着用户生成的在线内容的丰富,各种多模态任务层出不穷。使用手动对齐的完整信息,包括转录语言,音频和视频,以前的工作已经取得了显着的改进多模态任务。然而,用户生成的视频通常是不完美的。...基于RMFM的多模态任务的核心问题在于不完整模态序列的语义稀疏性,导致难以提取鲁棒的模态表示。据我所知,目前的工作大多直接使用具有缺失惩罚的不完整模态序列来学习联合融合表示。 ​...在之前的研究中,发现MFCC和AU姿势分别是声学和视觉模态中两个最具鉴别力的特征。因此,为了简单和高效的目的,我们只使用MFCC和AU姿势特征来检测抑郁症。

10510

大火的多模态,落地了吗?

01 多模态机器学习 多模态机器学习,英文全称 MultiModal Machine Learning (MMML),旨在通过机器学习的方法实现处理和理解多源模态信息的能力。...02 爆火的多模态 当下,多模态技术有着相当广泛的应用场景,如淘宝搜图、AI字幕、AI虚拟数字人、仿人交互、智能助手、商品推荐和信息流广告、视频帧人脸帧的图向量检索、语音交互等等。...03 多模态技术1小时综述 我给大家分享在职高级算法研究员Clark老师的《1小时多模态技术综述》,系统地为大家介绍多模态的发展趋势和常见任务。...*01 分享内容 01 多模态模型的发展趋势  02 多模态数据集  03 常见多模态下游任务 *02 主讲人 对多模态技术感兴趣的同学 扫下方二维码观看 扫码支付0.1元即可观看 添加客服可领取分享的...05 多模态项目 AI智能文案、基于多模态预训练模型的手机相册管理与检索、AI唇语识别、基于深度多模态目标检测和语义分割的自动驾驶 对多模态技术感兴趣的同学 扫下方二维码观看 扫码支付0.1元即可观看

75020
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【DeepSeek 多模态探索】从文本到图像与语音:解锁 DeepSeek 的多模态 AI 潜力

    摘要 随着多模态 AI 技术的快速发展,开发者对 DeepSeek 是否能够支持图像、音频等多模态任务充满期待。...本文将探讨 DeepSeek 在多模态方向上的潜力,分析其是否能够集成语音识别、图像生成等能力,并通过代码示例展示如何实现多模态任务的初步集成。...引言 多模态 AI 是当前人工智能领域的重要趋势,它能够同时处理文本、图像、音频等多种数据类型,从而实现更复杂的任务。GPT-4V 等模型已经展示了多模态能力的强大潜力。...多模态 AI 的背景与意义 多模态 AI 的核心在于能够同时处理和理解多种类型的数据(如文本、图像、音频等),从而实现更丰富的应用场景。例如: 图像生成:根据文本描述生成图像。...安装依赖 首先,安装必要的 Python 包: pip install torch transformers diffusers 文本生成与图像生成结合 以下代码展示了如何使用 DeepSeek 生成文本描述

    1K10

    多模态遥感图像自动匹配和产业级应用

    本报告将介绍多模态遥感图像匹配的研究现状,结构相似性匹配模型的原理以及相关工程化应用的案例和故事,包括商业软件集成、全球测图、无人机在线配准和融合、无人机视觉导航、飞行器精确制导等方面的应用。...相关程序和软件下载: 结构相似性匹配代码:https://github.com/yeyuanxin110 多模态遥感图像匹配系统:https://blog.csdn.net/yeyuanxin/article...yeyuanxin/18420474 个人简介 叶沅鑫,西南交通大学研究员(博导),四川省海外高层次留学人才,致力于遥感图像匹配方法研究...创建了极具特色的结构相似性多模态匹配理论与框架,集成于国产知名商业遥感软件PIE,填补了国际同类商业遥感软件(ENVI、ERDAS和PCI)无法进行多模态图像精确匹配的缺陷;研制了国内首套无人机可见光、...红外和雷达图像在线配准融合系统,集成于国家重大装备;研究成果已被中国科学院、中国兵器工业集团和航天科技集团等多家知名企事业单位采用,形成了“从理论到方法到技术”的完整转化应用链条,实现了产业级应用推广。

    62930

    【多模态 AI】从跨模态学习到生成革命:文本、图像与音频的深度交融

    摘要多模态 AI 架构通过融合文本、图像、视频和音频等多种数据模态,展现了强大的跨模态学习与应用能力,广泛应用于智能助手、内容生成与搜索等领域。...引言传统 AI 模型通常集中于单一模态(如文本、图像或音频),导致其在处理跨模态数据时能力受限。然而,真实世界中的数据常常是多模态的(例如带字幕的视频、带标签的图像等)。...多模态 AI 的发展致力于打破模态间的壁垒,通过统一表示与跨模态学习,实现更强的理解与生成能力。本文将从基础理论到实际应用,探讨多模态 AI 的技术全景。...多模态 AI 的核心架构跨模态表示学习目标:将不同模态的数据投影到同一空间,以便进行统一处理。常用方法:对比学习:例如 CLIP,利用文本-图像对比优化共享表征。...多模态智能助手支持多模态输入(如语音、图像、文本),提供精准反馈。案例:聊天机器人支持用户上传图像并结合文本提问。

    47720

    如何使用多模态知识图谱嵌入:整合图像与文本

    多模态知识图谱嵌入的目标是将不同模态(如文本和图像)信息整合到一个统一的向量空间中,既能保留知识图谱的结构信息,又能利用非结构化数据的潜在信息。...多模态知识图谱的概念多模态数据的定义多模态数据是指同时包含多种数据类型(如文本、图像、音频等)的信息。在知识图谱中,实体可能会有图像描述和文本描述,这些信息可以用来增强嵌入表示。...多模态知识图谱的构建多模态知识图谱的构建需要整合来自不同来源的信息。例如,可以通过图像识别技术提取图像特征,通过自然语言处理技术提取文本特征,然后将这些特征与知识图谱中的实体和关系进行关联。...构建步骤描述 数据收集 收集包含文本和图像的多模态数据。 特征提取 使用深度学习方法提取图像和文本特征。...构建知识图谱将特征与知识图谱中的实体和关系结合。多模态知识图谱嵌入的方法特征提取使用卷积神经网络(CNN)提取图像特征,使用预训练的语言模型(如BERT)提取文本特征。

    60621

    EMNLP 2021-多模态Transformer真的多模态了吗?论多模态Transformer对跨模态的影响

    作者测试了具有不同架构但具有相同初始化和训练流程的模型。 实验结果表明,这些模型确实学习了使用跨模态信息,从而导致多模态表示,但这两种模态对最终结果的影响程度并不相同。...如果测试过程中,去除某个模态的信息,对最终结果影响很大,那这个模态在最终预测的时候就是有用的;否则这个模态就是没用的。 多模态模型在预测时使用由多模态输入触发的跨模态激活。...如果一个多模态模型依赖于来自某些输入数据的激活做出预测,那么这个输入的消融将导致性能的变化,而如果模型没有学会使用的输入,删除它将没有影响。...输入数据以图像-句子对表示;在句子中,短语可以指代图像中的特定目标。作者期望这种对齐的短语-目标对能在预测时引起特别强的跨模态激活。通过消融对齐连接,作者测试了模型创建和使用这种对齐的能力。...对于视觉输入的消融,作者比较了以下设置: None: 没有一个视觉特征被消融。该模型可以访问完整的图像 。这是原始的多模态设置,因此,有效使用多模态信息的模型应该表现最好。

    2.2K20

    多模态情感识别_多模态融合的情感识别研究「建议收藏」

    大家好,又见面了,我是你们的朋友全栈君。 摘要: 情感是人们在沟通交流的过程中传递的重要信息,情感状态的变化影响着人们的感知和决策。情感识别是模式识别的重要研究领域,它将情感维度引入人机交互。...情感表达的模态包括面部表情、语音、姿势、生理信号、文字等,情感识别本质上是一个多模态融合的问题。...提出一种多模态融合的情感识别算法,从面部图像序列和语音信号中提取表情和语音特征,基于隐马尔可夫模型和多层感知器设计融合表情和语音模态的情感分类器。...建立面部表情图像的主动外观模型,实现面部特征点的定位和跟踪;根据面部特征点的位移,计算面部动画参数作为表情特征。对语音信号作时域、和频域分析,提取各帧的短时平均能量、基音频率和共振峰作为语音特征。...提出的多模态识别算法较好地利用了视频和音频中的情感信息,相比于仅利用语音模态的识别结果有较大的提升,相比于表情模态的识别结果也有一定改进,是一种可以采用的情感识别算法。

    1.1K10

    多模态对比语言图像预训练CLIP:打破语言与视觉的界限

    多模态对比语言图像预训练CLIP:打破语言与视觉的界限一种基于多模态(图像、文本)对比训练的神经网络。它可以在给定图像的情况下,使用自然语言来预测最相关的文本片段,而无需为特定任务进行优化。...CLIP的设计类似于GPT-2和GPT-3,具备出色的零射击能力,可以应用于多种多模态任务。多模态对比语言图像预训练(CLIP)是一种神经网络模型,它通过多模态对比训练来学习图像和文本之间的关联。...通过这种方式,CLIP可以学会将图像与相应的文本片段进行匹配,从而在给定图像的情况下,使用自然语言来预测最相关的文本片段。...由于CLIP采用了对比学习的方法,它可以在无需为特定任务进行优化的前提下,表现出色地完成多种多模态任务。...这使得CLIP成为了一种通用的多模态预训练模型,可以广泛应用于图像标注、视觉问答、图像生成等领域。CLIP(对比语言图像预训练)是一种基于多种(图像、文本)对进行训练的神经网络。

    91431

    EyeCLIP:用于多模态眼科图像分析的视觉语言基础模型 !

    因此,整合临床文本以捕捉更广泛的疾病至关重要。作者提出了EyeCLIP,这是一种使用超过277万张多模态眼科图像及其部分文本数据开发的视觉语言基础模型。...为了充分利用大量多模态未标注和标注数据,作者引入了一种预训练策略,该策略结合自监督重构、多模态图像对比学习以及图像-文本对比学习来学习多个模态的共享表示。...作者相信作者的方法不仅代表了眼科基础模型的重大进步,还为使用临床实践中积累的多模态医疗数据训练基础模型提供了在其他医学领域的启示。...在本研究中,作者通过在单个模态中使用遮盖图像重建进行自我监督学习,并在有对齐的多模态数据时使用对比学习来实现对齐,最大化了对实践过程中积累的多样化临床数据的有效利用,提供了一个潜在的框架来开发其他领域中的医学基础模型...BioMedCLIP BioMedCLIP是一种多模态的生物医学基础模型,该模型使用从PubMed Central的440万篇文章中提取的1500万幅科学图像-文本配对进行预训练。

    50710

    多模态智能的发展

    文章分类在学习摘录和笔记专栏: 学习摘录和笔记(18)---《多模态智能的发展》 多模态智能的发展 1 多模态智能定义 多模态智能旨在融合多种模态的信息进行处理实现智能应用...将多模态信号统一到同一个向量空间中,从而实现了多模态信号的交叉处理。...自然语言在帮助机器理解图像内容方面起着关键作用,而理解意味着捕捉语言中嵌入的语义与从图像中获得的视觉特征之间的潜在相关性。...2 多模态智能融合的发展 融合是多模态研究中的一个关键问题,它将从不同单模态数据中提取的信息整合到一个紧凑的多模态表示中。...主要用于融合文本和图像特征的三种方法包括:基于简单操作的方法、基于注意力的方法和基于张量的方法。

    12710

    机器学习-11-基于多模态特征融合的图像文本检索

    有效的信息检索和分析可以大大提高平台多模态数据的利用率及用户的使用体验,而不同模态间存在显著的语义鸿沟,大大制约了海量多模态数据的分析及有效信息挖掘。...(3)多模态特征融合模型和算法 分别得到图像和文本的特征后,建立一个多模态特征融合模型来整合这些特征。...多模态特征融合的图像文本检索”模型。...在这个示例中,使用了简单的拼接方式,将图像特征和文本特征直接连接在一起作为模型的输入。 4.模型训练与测试: 将数据集划分为训练集和测试集,使用划分后的数据训练多模态特征融合模型。...融合后的特征向量将包含图像和文本的语义信息,有助于更好地表示多模态数据。 相似度计算: 使用合适的相似度计算方法(如余弦相似度、欧氏距离等),计算图像与文本之间的相似度。

    70520

    ACL 2024 | 多模态大模型能揭示图像背后的深意吗?

    通过 DeepEval 基准,我们评估了 9 个前沿开源的多模态大模型和闭源的多模态大模型 GPT-4V(ison)。我们的评估显示,现有多模态大模型在图像深意理解能力方面与人类存在显著差距。...2.4 子任务组成 为了探索多模态大模型在理解图像深意方面的能力,我们构建了一个包含三个递进的子任务的综合评估: 细粒度描述选择任务:评估模型准确识别图像表层细节的能力。...其中包括 LLaVA-1.5,MiniGPT-4,mPLUG-Owl2,CogVLM,Qwen-VL,InstructBlip2,Fuyu开源多模态大模型和 GPT-4V(ison)闭源多模态大模型。...总结 我们提出了 DeepEval,它是一个用于评估多模态大模型视觉深层语义理解能力的基准。...进一步分析表明,多模态大模型对图像的深意理解能力会受图像类别、模型参数量、图像表层描述多个方面的影响。现有模型在视觉深意理解方面与人类相比仍有很长的路要走。

    19710

    MultiBench多模态表征学习的多尺度基准

    computing) 医疗:时变和静态变量的整合使用 机器人 金融 人机交互 多媒体 评价标准 性能: regression: MSE, MAE, classification: F1-score,...:对图像、音频等单独处理 考虑多模态整体的不完善:比如缺失模态等 MultiZoo:多模态算法集合 涵盖实现multibench整个过程中的算法 数据预处理 WordAlign算法 将各模态信息调整到统一粒度...后期融合表现比较均衡 有些融合方法是专门为2模态设计,有些在2/3模态表现不好 单模态与多模态的权衡 性能与复杂度的权衡 性能与鲁棒性的权衡 结论 一个大规模的基准,统一了以前在多模态研究中互不相干的工作...未来拓展 其他的多模态问题 新的评价指标 多模态迁移学习或者协同学习 多模态多任务学习 思考 MultiBench把以前多模态研究中使用的公开数据集,算法,评价指标等都统一在了一个框架下,期望标准化多模态学习过程...大而全的框架确实能为各类多模态任务提供一个baseline,但是各专业领域内的多模态模型应该是存在一些差异的,就像我们很难期待一个医生能掌握律师干的事情,然而,人工智能的发展确实很快,比人还强大的通用人工智能应该也会实现

    67530

    多模态及图像安全的探索与思考

    其中对我触动最大的就属上海合合信息的郭丰俊博士讲解的“文档图像前沿技术探索—多模态及图像安全”专题部分了。图片合合信息在讲解多模态及图像安全之前,我们先对合合信息科技做一个简单的介绍吧。...多模态模型进展与探索去年随着ChatGPT的横空出世,大家对多模态模型是否能快速融入到自己的工作场景产生了浓厚的兴趣。我们接下来讲一下多模态大模型对文档图像处理方面将会产生怎样的影响。...文档图像多模态属性多模态大模型是指能够同时处理多种类型数据(例如图像、文本、语音等)的强大神经网络模型。它将多个模态的输入数据整合在一起,并通过共享的模型结构进行联合训练和推理。...由此可见文档图像具有天然的多模态属性。多模态大模型在文档图像处理中的应用l GPT-4:多模态大模型如GPT-4已经取得了显著的进展,可以同时处理文本和图像数据,从而提高了文档图像识别与理解的性能。...这些模型使用了多模态Transformer编码器,可以应用于不同的文档图像处理任务,包括文本、表格、版面结构和多语言支持。

    38320

    多模态+Recorder︱多模态循环网络的图像文本互匹配

    基于这些候选实例,该模型在每个时间步使用多模态上下文注意机制来选择性关注一对图像文本实例(标记为同样颜色的圆圈和矩形框),并度量它们的相似性,具体流程可以参照图3。...因此,我们提出了一种基于选择式多模态循环网络的图像文本匹配方法,可以选择性关注和匹配图像文本中的语义实例。...所提出的选择式多模态循环网络是一个动态模型,在每一时间步,它利用基于上下文的多模态注意机制选择图像文本中语义上相同的目标和词语,并计算其相似性作为图像文本的局部相似性,然后进行序列化融合得到全局相似性。...考虑到草图与自然图像可能存在多视角的特征表达,且不同的视角作用差异较大,我们提出了一种基于视角选择的多视角跨模态匹配算法。...我们在两个经典的细粒度草图-图像数据集上进行了大量的实验,结果表明所提出的方法可以有效利用多模态多视角特性并提升检索性能。

    2.4K20

    多模态对比语言图像预训练CLIP:打破语言与视觉的界限

    多模态对比语言图像预训练CLIP:打破语言与视觉的界限 一种基于多模态(图像、文本)对比训练的神经网络。它可以在给定图像的情况下,使用自然语言来预测最相关的文本片段,而无需为特定任务进行优化。...CLIP的设计类似于GPT-2和GPT-3,具备出色的零射击能力,可以应用于多种多模态任务。 多模态对比语言图像预训练(CLIP)是一种神经网络模型,它通过多模态对比训练来学习图像和文本之间的关联。...通过这种方式,CLIP可以学会将图像与相应的文本片段进行匹配,从而在给定图像的情况下,使用自然语言来预测最相关的文本片段。...由于CLIP采用了对比学习的方法,它可以在无需为特定任务进行优化的前提下,表现出色地完成多种多模态任务。...这使得CLIP成为了一种通用的多模态预训练模型,可以广泛应用于图像标注、视觉问答、图像生成等领域。 CLIP(对比语言图像预训练)是一种基于多种(图像、文本)对进行训练的神经网络。

    38020

    如何使用多类型数据预训练多模态模型?

    点关注,不迷路,定期更新干货算法笔记~ 在训练过程中使用更多数据一直是深度学习提效的重要方法之一,在多模态场景也不例外。...在此之后对CLIP多模态模型的优化中,一个很重要的分支是如何使用更多其他类型的数据(例如图像分类数据、看图说话数据等),特别是CVPR 2022、谷歌等近期发表的工作,都集中在这个方面。...因此,FLAVA提出,在训练多模态模型时,同时引入图像领域和NLP领域的单模态任务,提升单模态模型的效果,这有助于多模态模型后续的训练。...在训练过程中,首先使用单模态任务(MIM、MLM)进行单模态模型的预训练,然后再同时使用单模态和多模态任务继续训练。...下表对比了FLAVA和其他多模态模型在训练数据、预训练任务和可解决的模态上的差异。FLAVA使用了多种单模态数据,让模型能够同时处理单模态和多模态任务。

    2.1K20

    数据融合:多模态图像融合技术在安全监控中的应用

    多模态图像融合技术概述多模态图像融合技术旨在将来自多个传感器或数据源的图像信息整合在一起,以获得比单一模态图像更全面、更准确的监控结果。...常见的多模态图像融合技术包括但不限于:特征级融合特征级融合技术是多模态图像融合中的一种重要方法,它旨在将不同图像源提取的特征进行有效融合,以增强监控系统对目标的检测和识别能力。...应用场景多模态图像融合技术在安全监控领域有着广泛的应用,其中一些典型的应用场景包括:边界监控: 在边界线或围栏周围部署可见光摄像头和红外摄像头,利用多模态图像融合技术监测和识别潜在的入侵者或异常行为。...工业安全: 在工业场所部署多模态监控系统,结合可见光图像、红外图像和激光雷达数据,实现对危险物质、设备异常和人员安全的综合监控。III. 部署过程以下是部署多模态图像融合技术的一般步骤:1....模型训练和优化利用深度学习或传统机器学习算法,对采集到的多模态图像数据进行训练和优化,构建多模态图像融合模型。4.

    63910
    领券